prathyushreddy1991 commited on
Commit
517a3b1
Β·
verified Β·
1 Parent(s): 9908d50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸ“š LegalMVP Dataset Collection
2
+
3
+ This repository contains curated U.S. legal datasets collected for building **retrieval-augmented generation (RAG)** and other machine learning models in the legal domain. The datasets include U.S. Codes (statutes), federal regulations, and other legal texts in multiple formats.
4
+
5
+ ---
6
+
7
+ ## πŸ“‚ Repository Structure
8
+
9
+ legalMVP/
10
+ β”‚
11
+ β”œβ”€β”€ regulations/ # Raw legal texts
12
+ β”‚ β”œβ”€β”€ USCODE-2022-title15.txt
13
+ β”‚ β”œβ”€β”€ USCODE-2023-title15.txt
14
+ β”‚ β”œβ”€β”€ USCODE-2023-title26.txt
15
+ β”‚ β”œβ”€β”€ USCODE-2023-title26.pdf
16
+ β”‚ └── ... (other titles/years)
17
+ β”‚
18
+ β”œβ”€β”€ scripts/ # Data processing & download scripts
19
+ β”‚ └── fetch_regulations.py # Example: fetches 200 statutes in txt/pdf
20
+ β”‚
21
+ └── README.md # Project documentation
22
+
23
+
24
+ ---
25
+
26
+ ## πŸ“‘ Datasets Obtained
27
+
28
+ We currently have **U.S. Code** (statutory law) datasets for multiple years, stored as both `.txt` and `.pdf`:
29
+
30
+ - **Title 15**: Commerce and Trade
31
+ - `USCODE-2022-title15.txt`
32
+ - `USCODE-2023-title15.txt`
33
+
34
+ - **Title 26**: Internal Revenue Code (Tax Law)
35
+ - `USCODE-2023-title26.txt`
36
+ - `USCODE-2023-title26.pdf`
37
+
38
+ More titles can be added as needed.
39
+
40
+ ---
41
+
42
+ ## πŸ› οΈ Data Formats
43
+
44
+ - **TXT** β†’ machine-friendly plain text (ideal for preprocessing, tokenization, embeddings, and training).
45
+ - **PDF** β†’ reference copies (useful for citation, legal formatting, and validation).
46
+
47
+ ---
48
+
49
+ ## 🎯 Intended Use
50
+
51
+ These datasets are intended for **legal NLP research**, specifically:
52
+
53
+ - **Retrieval-Augmented Generation (RAG)**:
54
+ Building retrieval pipelines to fetch relevant sections of statutes and regulations before passing them into LLMs.
55
+
56
+ - **Fine-Tuning / Domain Adaptation**:
57
+ Adapting open-source LLMs to understand statutory and regulatory language.
58
+
59
+ - **Information Extraction**:
60
+ Parsing structured knowledge from unstructured statutes.
61
+
62
+ ---
63
+
64
+ ## ⚑ Training Expectations
65
+
66
+ - **Input Size**:
67
+ Legal statutes are long and verbose β†’ chunking (e.g., 512–2048 tokens) is necessary before embeddings.
68
+
69
+ - **Embedding Models**:
70
+ Use sentence-transformers or OpenAI embedding models to index statutes for retrieval.
71
+
72
+ - **RAG Pipelines**:
73
+ Expect performance gains in **precision** of retrieval (correctly pulling the relevant statute sections).
74
+
75
+ - **Evaluation Metrics**:
76
+ - Retrieval: Recall@k, MRR (Mean Reciprocal Rank).
77
+ - QA: Accuracy, BLEU/ROUGE for generated answers.
78
+
79
+ ---
80
+
81
+ ## 🚧 Next Steps
82
+
83
+ 1. **Expand Coverage**
84
+ - Add more U.S. Code titles (e.g., Titles 7, 18, 42).
85
+ - Include **Code of Federal Regulations (CFR)** for regulatory data.
86
+
87
+ 2. **Preprocessing**
88
+ - Normalize whitespace, remove headers/footers.
89
+ - Add metadata (Title, Section, Year).
90
+
91
+ 3. **Embedding + Indexing**
92
+ - Build vector stores (e.g., FAISS, Weaviate, Chroma).
93
+
94
+ 4. **Model Training**
95
+ - Train/evaluate RAG pipeline with legal queries.
96
+ - Fine-tune LLMs on statute-specific Q&A pairs.
97
+
98
+ ---
99
+
100
+ ## πŸ“œ License
101
+
102
+ - The U.S. Code and federal regulations are in the **public domain**.
103
+ - Scripts and preprocessing logic are released under the MIT License.