Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
< 1K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""datas.""" | |
import csv | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = """\ | |
@inproceedings{Casanueva2020, | |
author = pnr, | |
title = {sentiment}, | |
year = {2022}, | |
month = {mar}, | |
note = {Data available at https://github.com/PnrSvc/dataset}, | |
url = {a}, | |
booktitle = {a} | |
} | |
""" | |
_DESCRIPTION = """\ | |
description | |
""" | |
_HOMEPAGE = "https://github.com/PnrSvc/dataset" | |
_TRAIN_DOWNLOAD_URL = ( | |
"https://github.com/PnrSvc/dataset/blob/main/turkish/train.csv" | |
) | |
_TEST_DOWNLOAD_URL = "https://github.com/PnrSvc/dataset/blob/main/turkish/test.csv" | |
class Datas(datasets.GeneratorBasedBuilder): | |
"""datas dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"label": datasets.Value("string"), | |
"target": datasets.features.ClassLabel( | |
names=[ | |
"negative", | |
"neutral", | |
"positive" | |
] | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
task_templates=[TextClassification(text_column="label", label_column="target")], | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) | |
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples as (key, example) tuples.""" | |
with open(filepath, encoding="utf-8") as f: | |
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True) | |
# call next to skip header | |
next(csv_reader) | |
for id_, row in enumerate(csv_reader): | |
label, target = row | |
yield id_, {"text": label, "label": target} |