phongdtd commited on
Commit
6b640f7
·
1 Parent(s): a873fa7

Update description

Browse files
Files changed (1) hide show
  1. youtube_casual_audio.py +10 -12
youtube_casual_audio.py CHANGED
@@ -12,7 +12,7 @@
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
- """ Common Voice Dataset"""
16
 
17
 
18
  import datasets
@@ -37,15 +37,15 @@ _LANGUAGES = {
37
  "Date": "2021-12-11",
38
  "Size": "17000 MB",
39
  "Version": "vi_100h_2020-12-11",
40
- "Validated_Hr_Total": 0.74,
41
- "Overall_Hr_Total": 1,
42
  "Number_Of_Voice": 62,
43
  },
44
  }
45
 
46
 
47
- class CustomCommonVoiceConfig(datasets.BuilderConfig):
48
- """BuilderConfig for CommonVoice."""
49
 
50
  def __init__(self, name, sub_version, **kwargs):
51
  """
@@ -63,20 +63,20 @@ class CustomCommonVoiceConfig(datasets.BuilderConfig):
63
  self.validated_hr_total = kwargs.pop("val_hrs", None)
64
  self.total_hr_total = kwargs.pop("total_hrs", None)
65
  self.num_of_voice = kwargs.pop("num_of_voice", None)
66
- description = f"Common Voice speech to text dataset in {self.language} version " \
67
  f"{self.sub_version} of {self.date_of_snapshot}. " \
68
  f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \
69
  f"{self.num_of_voice} speakers. The dataset has a size of {self.size} "
70
- super(CustomCommonVoiceConfig, self).__init__(
71
  name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs
72
  )
73
 
74
 
75
- class CustomCommonVoice(datasets.GeneratorBasedBuilder):
76
 
77
  DEFAULT_WRITER_BATCH_SIZE = 1000
78
  BUILDER_CONFIGS = [
79
- CustomCommonVoiceConfig(
80
  name=lang_id,
81
  language=_LANGUAGES[lang_id]["Language"],
82
  sub_version=_LANGUAGES[lang_id]["Version"],
@@ -89,7 +89,6 @@ class CustomCommonVoice(datasets.GeneratorBasedBuilder):
89
  {
90
  "file_path": datasets.Value("string"),
91
  "script": datasets.Value("string"),
92
- "duration": datasets.Value("float32"),
93
  "audio": datasets.Audio(sampling_rate=16_000),
94
  }
95
  )
@@ -148,7 +147,7 @@ class CustomCommonVoice(datasets.GeneratorBasedBuilder):
148
  df = df.dropna()
149
  chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
150
 
151
- for file_path, script, duration in zip(df["file_path"], df["script"], df["duration"]):
152
  # set full path for mp3 audio file
153
  audio_path = path_to_clips + "/" + file_path
154
 
@@ -162,7 +161,6 @@ class CustomCommonVoice(datasets.GeneratorBasedBuilder):
162
  examples[audio_path] = {
163
  "file_path": audio_path,
164
  "script": script,
165
- "duration": duration
166
  }
167
 
168
  for path, f in audio_files:
 
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
+ """ Youtube Casual Audio Dataset"""
16
 
17
 
18
  import datasets
 
37
  "Date": "2021-12-11",
38
  "Size": "17000 MB",
39
  "Version": "vi_100h_2020-12-11",
40
+ "Validated_Hr_Total": '~20h',
41
+ "Overall_Hr_Total": '~100h',
42
  "Number_Of_Voice": 62,
43
  },
44
  }
45
 
46
 
47
+ class YoutubeCasualAudioConfig(datasets.BuilderConfig):
48
+ """BuilderConfig for YoutubeCasualAudio."""
49
 
50
  def __init__(self, name, sub_version, **kwargs):
51
  """
 
63
  self.validated_hr_total = kwargs.pop("val_hrs", None)
64
  self.total_hr_total = kwargs.pop("total_hrs", None)
65
  self.num_of_voice = kwargs.pop("num_of_voice", None)
66
+ description = f"Youtube Casual Audio speech to text dataset in {self.language} version " \
67
  f"{self.sub_version} of {self.date_of_snapshot}. " \
68
  f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \
69
  f"{self.num_of_voice} speakers. The dataset has a size of {self.size} "
70
+ super(YoutubeCasualAudioConfig, self).__init__(
71
  name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs
72
  )
73
 
74
 
75
+ class YoutubeCasualAudio(datasets.GeneratorBasedBuilder):
76
 
77
  DEFAULT_WRITER_BATCH_SIZE = 1000
78
  BUILDER_CONFIGS = [
79
+ YoutubeCasualAudioConfig(
80
  name=lang_id,
81
  language=_LANGUAGES[lang_id]["Language"],
82
  sub_version=_LANGUAGES[lang_id]["Version"],
 
89
  {
90
  "file_path": datasets.Value("string"),
91
  "script": datasets.Value("string"),
 
92
  "audio": datasets.Audio(sampling_rate=16_000),
93
  }
94
  )
 
147
  df = df.dropna()
148
  chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
149
 
150
+ for file_path, script in zip(df["file_path"], df["script"]):
151
  # set full path for mp3 audio file
152
  audio_path = path_to_clips + "/" + file_path
153
 
 
161
  examples[audio_path] = {
162
  "file_path": audio_path,
163
  "script": script,
 
164
  }
165
 
166
  for path, f in audio_files: