File size: 6,419 Bytes
a71e4b6 1102f82 86a1eaa a71e4b6 a873fa7 9a86ac4 a873fa7 9a86ac4 a71e4b6 a873fa7 a71e4b6 2109ac9 a71e4b6 4bf433a 018c60b 9a86ac4 a71e4b6 9d7b476 a71e4b6 cde998c a873fa7 a71e4b6 9a86ac4 a873fa7 a71e4b6 9a86ac4 a873fa7 29cd8e8 9fe2df1 9a86ac4 a873fa7 a71e4b6 9a86ac4 a71e4b6 9a86ac4 1102f82 86a1eaa 1102f82 527f680 1102f82 86a1eaa 1102f82 527f680 1102f82 9a86ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
import datasets
from datasets.tasks import AutomaticSpeechRecognition
import pandas as pd
import re
_DATA_URL = "https://dutudn-my.sharepoint.com/:u:/g/personal/122180028_sv1_dut_udn_vn/Ed5mI5CjXIxHgb2qqPOElj0BBgn7FGT75SUgPdIuMS1LDw?download=1"
_PROMPTS_URLS = {
"train": "https://drive.google.com/uc?export=download&id=1s5d-1ZTzcxsnxUjiBLsv9KCB-yBcXyQ9",
"test": "https://drive.google.com/uc?export=download&id=1-l1QdNQ98DGZM63-GOKIVnFvxTz2SGeK",
"validation": "https://drive.google.com/uc?export=download&id=1GM_6s5icko6zRrldx8LcbANyl0geMSl8"
}
_DESCRIPTION = """\
"""
_LANGUAGES = {
"vi": {
"Language": "Vietnamese",
"Date": "2021-12-11",
"Size": "17000 MB",
"Version": "vi_100h_2020-12-11",
"Validated_Hr_Total": 0.74,
"Overall_Hr_Total": 1,
"Number_Of_Voice": 62,
},
}
class CustomCommonVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for CommonVoice."""
def __init__(self, name, sub_version, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
self.sub_version = sub_version
self.language = kwargs.pop("language", None)
self.date_of_snapshot = kwargs.pop("date", None)
self.size = kwargs.pop("size", None)
self.validated_hr_total = kwargs.pop("val_hrs", None)
self.total_hr_total = kwargs.pop("total_hrs", None)
self.num_of_voice = kwargs.pop("num_of_voice", None)
description = f"Common Voice speech to text dataset in {self.language} version " \
f"{self.sub_version} of {self.date_of_snapshot}. " \
f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \
f"{self.num_of_voice} speakers. The dataset has a size of {self.size} "
super(CustomCommonVoiceConfig, self).__init__(
name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs
)
class CustomCommonVoice(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
CustomCommonVoiceConfig(
name=lang_id,
language=_LANGUAGES[lang_id]["Language"],
sub_version=_LANGUAGES[lang_id]["Version"],
)
for lang_id in _LANGUAGES.keys()
]
def _info(self):
features = datasets.Features(
{
"file_path": datasets.Value("string"),
"script": datasets.Value("string"),
"duration": datasets.Value("float32"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
task_templates=[
AutomaticSpeechRecognition(audio_file_path_column="file_path", transcription_column="script")
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archive = dl_manager.download(_DATA_URL)
tsv_files = dl_manager.download(_PROMPTS_URLS)
path_to_data = "audio"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tsv_files": tsv_files["train"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_data,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tsv_files": tsv_files["test"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_data,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tsv_files": tsv_files["validation"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_data,
},
),
]
def _generate_examples(self, tsv_files, audio_files, path_to_clips):
"""Yields examples."""
data_fields = list(self._info().features.keys())
# audio is not a header of the csv files
data_fields.remove("audio")
examples = {}
df = pd.read_csv(tsv_files, sep="\t", header=0)
df = df.dropna()
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
for file_path, script, duration in zip(df["file_path"], df["script"], df["duration"]):
# set full path for mp3 audio file
audio_path = path_to_clips + "/" + file_path
# Preprocessing script
if ":" in script:
two_dot_index = script.index(":")
script = script[two_dot_index + 1:]
script = script.replace("\n", " ")
script = re.sub(chars_to_ignore_regex, '', script).lower()
examples[audio_path] = {
"file_path": audio_path,
"script": script,
"duration": duration
}
for path, f in audio_files:
if path.startswith(path_to_clips):
if path in examples:
audio = {"path": path, "bytes": f.read()}
yield path, {**examples[path], "audio": audio}
|