File size: 9,521 Bytes
a71e4b6 1102f82 86a1eaa a71e4b6 1c1db08 9a86ac4 b799535 9a86ac4 a71e4b6 9fe2df1 a71e4b6 2109ac9 a71e4b6 86a1eaa a71e4b6 4bf433a 018c60b 9a86ac4 a71e4b6 9d7b476 a71e4b6 cde998c a88a8b1 6e6b986 a71e4b6 9a86ac4 a71e4b6 9a86ac4 29cd8e8 9fe2df1 9a86ac4 a71e4b6 9a86ac4 a71e4b6 9a86ac4 1102f82 86a1eaa 1102f82 527f680 1102f82 86a1eaa 1102f82 527f680 1102f82 9a86ac4 0f67128 9a86ac4 0f67128 9a86ac4 86a1eaa 0f67128 9a86ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
import datasets
from datasets.tasks import AutomaticSpeechRecognition
import pandas as pd
import re
_DATA_URL = "https://dutudn-my.sharepoint.com/:u:/g/personal/122180028_sv1_dut_udn_vn/EYsBHQzK4JVFhmN50e5vRFMBizbGJGXe_HlxV9uRlLaTyg?e=s1czWW?download=1"
_PROMPTS_URLS = {
"train": "https://drive.google.com/uc?export=download&id=13sANpjVoF9FIXj_rGGNvVNuK0GscPVsW",
"test": "https://drive.google.com/uc?export=download&id=173oUWFMbeFUBnfoVke4dH2fiHdgOu9xb",
"validation": "https://drive.google.com/uc?export=download&id=1J1zTG0IMPIRWnnw3dyr2UTyiq-KvlcX5"
}
_DESCRIPTION = """\
Common Voice is Mozilla's initiative to help teach machines how real people speak.
The dataset currently consists of 7,335 validated hours of speech in 60 languages, but we’re always adding more voices
and languages.
"""
_LANGUAGES = {
"vi": {
"Language": "Vietnamese",
"Date": "2020-12-11",
"Size": "50 MB",
"Version": "vi_1h_2020-12-11",
"Validated_Hr_Total": 0.74,
"Overall_Hr_Total": 1,
"Number_Of_Voice": 62,
},
}
class CustomCommonVoiceConfig(datasets.BuilderConfig):
"""BuilderConfig for CommonVoice."""
def __init__(self, name, sub_version, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
self.sub_version = sub_version
self.language = kwargs.pop("language", None)
self.date_of_snapshot = kwargs.pop("date", None)
self.size = kwargs.pop("size", None)
self.validated_hr_total = kwargs.pop("val_hrs", None)
self.total_hr_total = kwargs.pop("total_hrs", None)
self.num_of_voice = kwargs.pop("num_of_voice", None)
description = f"Common Voice speech to text dataset in {self.language} version " \
f"{self.sub_version} of {self.date_of_snapshot}. " \
f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \
f"{self.num_of_voice} speakers. The dataset has a size of {self.size} "
super(CustomCommonVoiceConfig, self).__init__(
name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs
)
class CustomCommonVoice(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
CustomCommonVoiceConfig(
name=lang_id,
language=_LANGUAGES[lang_id]["Language"],
sub_version=_LANGUAGES[lang_id]["Version"],
# date=_LANGUAGES[lang_id]["Date"],
# size=_LANGUAGES[lang_id]["Size"],
# val_hrs=_LANGUAGES[lang_id]["Validated_Hr_Total"],
# total_hrs=_LANGUAGES[lang_id]["Overall_Hr_Total"],
# num_of_voice=_LANGUAGES[lang_id]["Number_Of_Voice"],
)
for lang_id in _LANGUAGES.keys()
]
def _info(self):
features = datasets.Features(
{
"file_path": datasets.Value("string"),
"script": datasets.Value("string"),
"duration": datasets.Value("float32"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
task_templates=[
AutomaticSpeechRecognition(audio_file_path_column="file_path", transcription_column="script")
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archive = dl_manager.download(_DATA_URL)
tsv_files = dl_manager.download(_PROMPTS_URLS)
path_to_data = "content/data_2/"
path_to_clips = path_to_data + "audio"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tsv_files": tsv_files["train"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_clips,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tsv_files": tsv_files["test"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_clips,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tsv_files": tsv_files["validation"],
"audio_files": dl_manager.iter_archive(archive),
"path_to_clips": path_to_clips,
},
),
# datasets.SplitGenerator(
# name="other",
# gen_kwargs={
# "files": dl_manager.iter_archive(archive),
# "filepath": "/".join([path_to_data, "other.tsv"]),
# "path_to_clips": path_to_clips,
# },
# ),
# datasets.SplitGenerator(
# name="invalidated",
# gen_kwargs={
# "files": dl_manager.iter_archive(archive),
# "filepath": "/".join([path_to_data, "invalidated.tsv"]),
# "path_to_clips": path_to_clips,
# },
# ),
]
def _generate_examples(self, tsv_files, audio_files, path_to_clips):
"""Yields examples."""
data_fields = list(self._info().features.keys())
# audio is not a header of the csv files
data_fields.remove("audio")
examples = {}
df = pd.read_csv(tsv_files, sep="\t", header=0)
df = df.dropna()
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
for file_path, script, duration in zip(df["file_path"], df["script"], df["duration"]):
# set full path for mp3 audio file
audio_path = path_to_clips + "/" + file_path
# Preprocessing script
if ":" in script:
two_dot_index = script.index(":")
script = script[two_dot_index + 1:]
script = script.replace("\n", " ")
script = re.sub(chars_to_ignore_regex, '', script).lower()
examples[audio_path] = {
"file_path": audio_path,
"script": script,
"duration": duration
}
# inside_clips_dir = False
for path, f in audio_files:
if path.startswith(path_to_clips):
# inside_clips_dir = True
if path in examples:
audio = {"path": path, "bytes": f.read()}
yield path, {**examples[path], "audio": audio}
# elif "custom_common_voice.tsv" in path:
# continue
# elif ".txt" in path:
# continue
# elif inside_clips_dir:
# break
# for path, f in tsv_files:
# if path == filepath:
# metadata_found = True
# lines = f.readlines()
# headline = lines[0]
# column_names = headline.strip().split("\t")
# assert (
# column_names == data_fields
# ), f"The file should have {data_fields} as column names, but has {column_names}"
# for line in lines[1:]:
# field_values = line.strip().split("\t")
# # set full path for mp3 audio file
# audio_path = path_to_clips + "/" + field_values[path_idx]
# all_field_values[audio_path] = field_values
# elif path.startswith(path_to_clips):
# assert metadata_found, "Found audio clips before the metadata TSV file."
# if not all_field_values:
# break
# if path in all_field_values:
# field_values = all_field_values[path]
#
# # if data is incomplete, fill with empty values
# if len(field_values) < len(data_fields):
# field_values += (len(data_fields) - len(field_values)) * ["''"]
#
# result = {key: value for key, value in zip(data_fields, field_values)}
#
# # set audio feature
# result["audio"] = {"path": path, "bytes": f.read()}
#
# yield path, result
|