--- dataset_info: features: - name: repo_name dtype: string - name: repo_commit dtype: string - name: repo_content dtype: string - name: repo_readme dtype: string splits: - name: train num_bytes: 29227644 num_examples: 158 - name: test num_bytes: 8765331 num_examples: 40 download_size: 12307532 dataset_size: 37992975 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: apache-2.0 task_categories: - summarization tags: - code size_categories: - n<1K --- # Generate README Eval The generate-readme-eval is a dataset (train split) and benchmark (test split) to evaluate the effectiveness of LLMs when summarizing entire GitHub repos in form of a README.md file. The datset is curated from top 400 real Python repositories from GitHub with at least 1000 stars and 100 forks. The script used to generate the dataset can be found [here](_script_for_gen.py). For the dataset we restrict ourselves to GH repositories that are less than 100k tokens in size to allow us to put the entire repo in the context of LLM in a single call. The `train` split of the dataset can be used to fine-tune your own model, the results reported here are for the `test` split. To evaluate a LLM on the benchmark we can use the evaluation script given [here](_script_for_eval.py). During evaluation we prompt the LLM to generate a structured README.md file using the entire contents of the repository (`repo_content`). We evaluate the output response from LLM by comparing it with the actual README file of that repository across several different metrics. In addition to the traditional NLP metircs like BLEU, ROUGE scores and cosine similarity, we also compute custom metrics that capture structural similarity, code consistency, readbility and information retrieval (from code to README). The final score is generated between by taking a weighted average of the metrics. The weights used for the final score are shown below. ``` weights = { 'bleu': 0.1, 'rouge-1': 0.033, 'rouge-2': 0.033, 'rouge-l': 0.034, 'cosine_similarity': 0.1, 'structural_similarity': 0.1, 'information_retrieval': 0.2, 'code_consistency': 0.2, 'readability': 0.2 } ``` At the end of evaluation the script will print the metrics and store the entire run in a log file. If you want to add your model to the leaderboard please create a PR with the log file of the run and details about the model. If we use the existing README.md files in the repositories as the golden output, we would get a score of 56.6 on this benchmark. We can validate it by running the evaluation script with `--oracle` flag. The oracle run log is available [here](oracle_results_20240912_155859.log). # Leaderboard | Model | Score | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-l | Cosine-Sim | Structural-Sim | Info-Ret | Code-Consistency | Readability | Logs | |:-----:|:-----:|:----:|:-------:|:-------:|:-------:|:----------:|:--------------:|:--------:|:----------------:|:-----------:|:----:| | gpt-4o-mini-2024-07-18 | 32.16 | 1.64 | 15.46 | 3.85 | 14.84 | 40.57 | 23.81 | 72.50 | 4.77 | 44.81 | [link](gpt-4o-mini-2024-07-18_results_20240912_161045.log) | | gpt-4o-2024-08-06 | 33.13 | 1.68 | 15.36 | 3.59 | 14.81 | 40.00 | 23.91 | 74.50 | **8.36** | 44.33 | [link](gpt-4o-2024-08-06_results_20240912_155645.log) | | gemini-1.5-flash-8b-exp-0827 | 32.12 | 1.36 | 14.66 | 3.31 | 14.14 | 38.31 | 23.00 | 70.00 | 7.43 | **46.47** | [link](gemini-1.5-flash-8b-exp-0827_results_20240912_134026.log) | | **gemini-1.5-flash-exp-0827** | **33.43** | 1.66 | **16.00** | 3.88 | **15.33** | **41.87** | 23.59 | **76.50** | 7.86 | 43.34 | [link](gemini-1.5-flash-exp-0827_results_20240912_144919.log) | | gemini-1.5-pro-exp-0827 | 32.51 | **2.55** | 15.27 | **4.97** | 14.86 | 41.09 | **23.94** | 72.82 | 6.73 | 43.34 | [link](gemini-1.5-pro-exp-0827_results_20240912_141225.log) | | oracle-score | 56.79 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 98.24 | 59.00 | 11.01 | 14.84 | [link](oracle_results_20240912_155859.log) |