|
import os |
|
import argparse |
|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
import nltk |
|
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction |
|
from rouge import Rouge |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import re |
|
from textstat import flesch_reading_ease |
|
from datasets import load_dataset |
|
import openai |
|
import time |
|
from datetime import datetime |
|
import google.generativeai as genai |
|
import traceback |
|
|
|
SLEEP_INTERVAL = 30 |
|
|
|
nltk.download('punkt', quiet=True) |
|
nltk.download('averaged_perceptron_tagger', quiet=True) |
|
|
|
def create_client(model_name, base_url): |
|
if model_name.lower().startswith('gemini'): |
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
if not api_key: |
|
raise ValueError("GOOGLE_API_KEY environment variable is not set") |
|
genai.configure(api_key=api_key) |
|
return 'gemini' |
|
else: |
|
api_key = os.getenv("OPENAI_API_KEY") |
|
if not api_key: |
|
raise ValueError("OPENAI_API_KEY environment variable is not set") |
|
return openai.OpenAI(api_key=api_key) if base_url is None else openai.OpenAI(api_key=api_key, base_url=base_url) |
|
|
|
def preprocess(text): |
|
return nltk.word_tokenize(text.lower()) |
|
|
|
def calculate_bleu(reference, candidate): |
|
reference_tokens = preprocess(reference) |
|
candidate_tokens = preprocess(candidate) |
|
smoothie = SmoothingFunction().method1 |
|
return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=smoothie) |
|
|
|
def calculate_rouge(reference, candidate): |
|
rouge = Rouge() |
|
scores = rouge.get_scores(candidate, reference) |
|
return { |
|
'rouge-1': scores[0]['rouge-1']['f'], |
|
'rouge-2': scores[0]['rouge-2']['f'], |
|
'rouge-l': scores[0]['rouge-l']['f'] |
|
} |
|
|
|
def calculate_cosine_similarity(reference, candidate): |
|
vectorizer = TfidfVectorizer() |
|
tfidf_matrix = vectorizer.fit_transform([reference, candidate]) |
|
return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0] |
|
|
|
def extract_sections(readme): |
|
sections = [] |
|
current_section = "" |
|
for line in readme.split('\n'): |
|
if line.strip().startswith('#'): |
|
if current_section: |
|
sections.append(current_section.strip()) |
|
current_section = line + "\n" |
|
else: |
|
current_section += line + "\n" |
|
if current_section: |
|
sections.append(current_section.strip()) |
|
return sections |
|
|
|
def calculate_structural_similarity(reference, candidate): |
|
ref_sections = extract_sections(reference) |
|
cand_sections = extract_sections(candidate) |
|
|
|
|
|
max_sections = max(len(ref_sections), len(cand_sections)) |
|
section_diff = abs(len(ref_sections) - len(cand_sections)) |
|
section_similarity = 1 - (section_diff / max_sections) if max_sections > 0 else 0 |
|
|
|
|
|
ref_titles = [s.split('\n')[0] for s in ref_sections] |
|
cand_titles = [s.split('\n')[0] for s in cand_sections] |
|
title_similarity = len(set(ref_titles) & set(cand_titles)) / max(len(ref_titles), len(cand_titles)) if ref_titles or cand_titles else 0 |
|
|
|
|
|
structural_similarity = (section_similarity + title_similarity) / 2 |
|
|
|
return structural_similarity |
|
|
|
def information_retrieval_score(readme): |
|
key_sections = ['installation', 'usage', 'api', 'example', 'license'] |
|
found_sections = sum(1 for section in key_sections if section in readme.lower()) |
|
return found_sections / len(key_sections) |
|
|
|
def code_readme_consistency(repo_content, readme): |
|
code_elements = set(re.findall(r'def\s+(\w+)', repo_content) + |
|
re.findall(r'class\s+(\w+)', repo_content)) |
|
|
|
mentioned_elements = sum(1 for element in code_elements if element in readme) |
|
|
|
return mentioned_elements / len(code_elements) if code_elements else 0 |
|
|
|
def calculate_readability(text): |
|
return flesch_reading_ease(text) / 100 |
|
|
|
def evaluate_readme(reference_readme, generated_readme, repo_content): |
|
bleu_score = calculate_bleu(reference_readme, generated_readme) |
|
rouge_scores = calculate_rouge(reference_readme, generated_readme) |
|
cosine_sim = calculate_cosine_similarity(reference_readme, generated_readme) |
|
structural_sim = calculate_structural_similarity(reference_readme, generated_readme) |
|
info_retrieval = information_retrieval_score(generated_readme) |
|
code_consistency = code_readme_consistency(repo_content, generated_readme) |
|
readability = calculate_readability(generated_readme) |
|
|
|
weights = { |
|
'bleu': 0.1, |
|
'rouge-1': 0.033, |
|
'rouge-2': 0.033, |
|
'rouge-l': 0.034, |
|
'cosine_similarity': 0.1, |
|
'structural_similarity': 0.1, |
|
'information_retrieval': 0.2, |
|
'code_consistency': 0.2, |
|
'readability': 0.2 |
|
} |
|
|
|
weighted_score = ( |
|
weights['bleu'] * bleu_score + |
|
weights['rouge-1'] * rouge_scores['rouge-1'] + |
|
weights['rouge-2'] * rouge_scores['rouge-2'] + |
|
weights['rouge-l'] * rouge_scores['rouge-l'] + |
|
weights['cosine_similarity'] * cosine_sim + |
|
weights['structural_similarity'] * structural_sim + |
|
weights['information_retrieval'] * info_retrieval + |
|
weights['code_consistency'] * code_consistency + |
|
weights['readability'] * readability |
|
) |
|
|
|
return { |
|
'bleu': bleu_score, |
|
'rouge': rouge_scores, |
|
'cosine_similarity': cosine_sim, |
|
'structural_similarity': structural_sim, |
|
'information_retrieval': info_retrieval, |
|
'code_consistency': code_consistency, |
|
'readability': readability, |
|
'weighted_score': weighted_score |
|
} |
|
|
|
def generate_readme_openai(repo_content, model, client): |
|
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository. |
|
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks. |
|
The README should include the following sections: |
|
1. Project Title |
|
2. Description |
|
3. Installation |
|
4. Usage |
|
5. Features |
|
6. Contributing |
|
7. License |
|
Ensure that your response is well-structured, informative, and directly usable as a README.md file.""" |
|
|
|
user_prompt = f"Here is the content of the repository:\n\n{repo_content}\n\nBased on this content, please generate a README.md file." |
|
|
|
response = client.chat.completions.create( |
|
model=model, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
) |
|
|
|
return response.choices[0].message.content |
|
|
|
def generate_readme_gemini(repo_content, model): |
|
safe = [ |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
] |
|
prompt = f"""Create a README.md file for a GitHub repository based on the following repository content. |
|
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks. |
|
The README should include the following sections: |
|
1. Project Title |
|
2. Description |
|
3. Installation |
|
4. Usage |
|
5. Features |
|
6. Contributing |
|
7. License |
|
Ensure that your response is well-structured, informative, and directly usable as a README.md file. |
|
|
|
Repository content: |
|
|
|
{repo_content} |
|
""" |
|
|
|
model = genai.GenerativeModel(model,safety_settings=safe) |
|
response = model.generate_content(prompt) |
|
|
|
return response.text |
|
|
|
def generate_readme(repo_content, model_name, client): |
|
if client == 'gemini': |
|
return generate_readme_gemini(repo_content, model_name) |
|
else: |
|
return generate_readme_openai(repo_content, model_name, client) |
|
|
|
def main(args): |
|
dataset = load_dataset("patched-codes/generate-readme-eval") |
|
|
|
results = [] |
|
|
|
if args.generate_fine_tune_jsonl: |
|
output_file = f"fine_tune_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.jsonl" |
|
generate_fine_tune_jsonl(dataset, output_file) |
|
print(f"Fine-tune JSONL file generated: {output_file}") |
|
return |
|
|
|
if args.oracle: |
|
model_name = "oracle" |
|
else: |
|
model_name = args.model |
|
client = create_client(model_name, args.base_url) |
|
|
|
for item in tqdm(dataset['test'], desc="Processing repos"): |
|
try: |
|
if args.oracle: |
|
|
|
generated_readme = item['repo_readme'] |
|
elif args.n_shot > 0: |
|
generated_readme = generate_readme_n_shot(item['repo_content'], model_name, client, dataset['train'], args.n_shot) |
|
else: |
|
generated_readme = generate_readme(item['repo_content'], model_name, client) |
|
|
|
eval_result = evaluate_readme(item['repo_readme'], generated_readme, item['repo_content']) |
|
eval_result['repo_name'] = item['repo_name'] |
|
results.append(eval_result) |
|
except Exception as e: |
|
print(f"Error processing repo {item['repo_name']}: {e}") |
|
continue |
|
if model_name.lower().startswith('gemini'): |
|
time.sleep(SLEEP_INTERVAL) |
|
|
|
average_scores = { |
|
'bleu': np.mean([r['bleu'] for r in results]), |
|
'rouge-1': np.mean([r['rouge']['rouge-1'] for r in results]), |
|
'rouge-2': np.mean([r['rouge']['rouge-2'] for r in results]), |
|
'rouge-l': np.mean([r['rouge']['rouge-l'] for r in results]), |
|
'cosine_similarity': np.mean([r['cosine_similarity'] for r in results]), |
|
'structural_similarity': np.mean([r['structural_similarity'] for r in results]), |
|
'information_retrieval': np.mean([r['information_retrieval'] for r in results]), |
|
'code_consistency': np.mean([r['code_consistency'] for r in results]), |
|
'readability': np.mean([r['readability'] for r in results]), |
|
'weighted_score': np.mean([r['weighted_score'] for r in results]) |
|
} |
|
|
|
|
|
print("\nEvaluation Results:") |
|
for metric, score in average_scores.items(): |
|
print(f"{metric}: {score:.4f}") |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
log_filename = f"{model_name}_results_{timestamp}.log" |
|
|
|
with open(log_filename, 'w') as log_file: |
|
log_file.write(f"Evaluation Results for model: {model_name}\n") |
|
log_file.write(f"Timestamp: {timestamp}\n\n") |
|
log_file.write("Average Scores:\n") |
|
for metric, score in average_scores.items(): |
|
log_file.write(f"{metric}: {score:.4f}\n") |
|
|
|
log_file.write(f"\nDetailed Results:\n") |
|
for result in results: |
|
log_file.write(f"\nRepository: {result['repo_name']}\n") |
|
log_file.write("Scores:\n") |
|
log_file.write(f" BLEU: {result['bleu']:.4f}\n") |
|
log_file.write(f" ROUGE-1: {result['rouge']['rouge-1']:.4f}\n") |
|
log_file.write(f" ROUGE-2: {result['rouge']['rouge-2']:.4f}\n") |
|
log_file.write(f" ROUGE-L: {result['rouge']['rouge-l']:.4f}\n") |
|
log_file.write(f" Cosine Similarity: {result['cosine_similarity']:.4f}\n") |
|
log_file.write(f" Structural Similarity: {result['structural_similarity']:.4f}\n") |
|
log_file.write(f" Information Retrieval: {result['information_retrieval']:.4f}\n") |
|
log_file.write(f" Code Consistency: {result['code_consistency']:.4f}\n") |
|
log_file.write(f" Readability: {result['readability']:.4f}\n") |
|
log_file.write(f" Weighted Score: {result['weighted_score']:.4f}\n") |
|
|
|
print(f"\nResults saved to {log_filename}") |
|
|
|
def generate_fine_tune_jsonl(dataset, output_file): |
|
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository. |
|
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks. |
|
The README should include the following sections: |
|
1. Project Title |
|
2. Description |
|
3. Installation |
|
4. Usage |
|
5. Features |
|
6. Contributing |
|
7. License |
|
Ensure that your response is well-structured, informative, and directly usable as a README.md file.""" |
|
|
|
with open(output_file, 'w') as f: |
|
for item in tqdm(dataset['train'], desc="Generating fine-tune data"): |
|
user_prompt = f"Here is the content of the repository:\n\n{item['repo_content']}\n\nBased on this content, please generate a README.md file." |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt}, |
|
{"role": "assistant", "content": item['repo_readme']} |
|
] |
|
|
|
json.dump({"messages": messages}, f) |
|
f.write('\n') |
|
|
|
def find_similar_examples(repo_content, train_dataset, n): |
|
vectorizer = TfidfVectorizer() |
|
train_contents = [item['repo_content'] for item in train_dataset] |
|
train_vectors = vectorizer.fit_transform(train_contents) |
|
query_vector = vectorizer.transform([repo_content]) |
|
|
|
similarities = cosine_similarity(query_vector, train_vectors).flatten() |
|
top_n_indices = similarities.argsort()[-n:][::-1] |
|
|
|
return [train_dataset[int(i)] for i in top_n_indices] |
|
|
|
def generate_readme_n_shot(repo_content, model_name, client, train_dataset, n_shot): |
|
similar_examples = find_similar_examples(repo_content, train_dataset, n_shot) |
|
|
|
system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository. |
|
Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks. |
|
The README should include the following sections: |
|
1. Project Title |
|
2. Description |
|
3. Installation |
|
4. Usage |
|
5. Features |
|
6. Contributing |
|
7. License |
|
Ensure that your response is well-structured, informative, and directly usable as a README.md file.""" |
|
|
|
few_shot_examples = "" |
|
for example in similar_examples: |
|
few_shot_examples += f"Repository content:\n\n{example['repo_content']}\n\n" |
|
few_shot_examples += f"Generated README:\n\n{example['repo_readme']}\n\n---\n\n" |
|
|
|
user_prompt = f"""Here are some examples of repository contents and their corresponding README files: |
|
|
|
{few_shot_examples} |
|
Now, here is the content of the repository you need to create a README for: |
|
|
|
{repo_content} |
|
|
|
Based on this content and the examples provided, please generate a README.md file.""" |
|
|
|
if client == 'gemini': |
|
safe = [ |
|
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"}, |
|
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"}, |
|
] |
|
model = genai.GenerativeModel(model_name, safety_settings=safe) |
|
response = model.generate_content(user_prompt) |
|
return response.text |
|
else: |
|
response = client.chat.completions.create( |
|
model=model_name, |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
) |
|
return response.choices[0].message.content |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Generate and evaluate README files using OpenAI or Gemini API, or compute oracle scores") |
|
parser.add_argument("model", nargs='?', help="Model to use (e.g., 'gpt-4o-mini' for OpenAI or 'gemini-1.5-flash' for Google)") |
|
parser.add_argument("--base_url", help="Optional base URL for OpenAI API", default=None) |
|
parser.add_argument("--oracle", action="store_true", help="Compute oracle scores using existing READMEs") |
|
parser.add_argument("--generate-fine-tune-jsonl", action="store_true", help="Generate a JSONL file for fine-tuning") |
|
parser.add_argument("--n_shot", type=int, default=0, help="Number of examples to use for few-shot learning") |
|
args = parser.parse_args() |
|
|
|
if args.generate_fine_tune_jsonl: |
|
if args.oracle or args.model: |
|
parser.error("--generate-fine-tune-jsonl flag cannot be used with --oracle or model specification") |
|
elif args.oracle and args.model: |
|
parser.error("--oracle flag cannot be used with a model specification") |
|
elif not args.oracle and not args.model: |
|
parser.error("Either --oracle flag or a model name must be provided") |
|
|
|
main(args) |
|
|