File size: 9,510 Bytes
314657b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import argparse
import json
import numpy as np
from tqdm import tqdm
import nltk
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
from rouge import Rouge
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
from textstat import flesch_reading_ease
from datasets import load_dataset
import openai
from datetime import datetime

nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)

def preprocess(text):
    return nltk.word_tokenize(text.lower())

def calculate_bleu(reference, candidate):
    reference_tokens = preprocess(reference)
    candidate_tokens = preprocess(candidate)
    smoothie = SmoothingFunction().method1
    return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=smoothie)

def calculate_rouge(reference, candidate):
    rouge = Rouge()
    scores = rouge.get_scores(candidate, reference)
    return {
        'rouge-1': scores[0]['rouge-1']['f'],
        'rouge-2': scores[0]['rouge-2']['f'],
        'rouge-l': scores[0]['rouge-l']['f']
    }

def calculate_cosine_similarity(reference, candidate):
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform([reference, candidate])
    return cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]

def extract_sections(readme):
    sections = []
    current_section = ""
    for line in readme.split('\n'):
        if line.strip().startswith('#'):
            if current_section:
                sections.append(current_section.strip())
            current_section = line + "\n"
        else:
            current_section += line + "\n"
    if current_section:
        sections.append(current_section.strip())
    return sections

def calculate_structural_similarity(reference, candidate):
    ref_sections = extract_sections(reference)
    cand_sections = extract_sections(candidate)
    
    section_diff = abs(len(ref_sections) - len(cand_sections))
    
    ref_titles = [s.split('\n')[0] for s in ref_sections]
    cand_titles = [s.split('\n')[0] for s in cand_sections]
    title_similarity = len(set(ref_titles) & set(cand_titles)) / max(len(ref_titles), len(cand_titles))
    
    return {
        'section_difference': section_diff,
        'title_similarity': title_similarity
    }

def information_retrieval_score(readme):
    key_sections = ['installation', 'usage', 'api', 'example', 'license']
    found_sections = sum(1 for section in key_sections if section in readme.lower())
    return found_sections / len(key_sections)

def code_readme_consistency(repo_content, readme):
    code_elements = set(re.findall(r'def\s+(\w+)', repo_content) + 
                        re.findall(r'class\s+(\w+)', repo_content))
    
    mentioned_elements = sum(1 for element in code_elements if element in readme)
    
    return mentioned_elements / len(code_elements) if code_elements else 0

def calculate_readability(text):
    return flesch_reading_ease(text) / 100

def evaluate_readme(reference_readme, generated_readme, repo_content):
    bleu_score = calculate_bleu(reference_readme, generated_readme)
    rouge_scores = calculate_rouge(reference_readme, generated_readme)
    cosine_sim = calculate_cosine_similarity(reference_readme, generated_readme)
    structural_sim = calculate_structural_similarity(reference_readme, generated_readme)
    info_retrieval = information_retrieval_score(generated_readme)
    code_consistency = code_readme_consistency(repo_content, generated_readme)
    readability = calculate_readability(generated_readme)
    
    weights = {
        'bleu': 0.1,
        'rouge-1': 0.1,
        'rouge-2': 0.1,
        'rouge-l': 0.1,
        'cosine_similarity': 0.1,
        'structural_similarity': 0.1,
        'information_retrieval': 0.15,
        'code_consistency': 0.15,
        'readability': 0.1
    }
    
    weighted_score = (
        weights['bleu'] * bleu_score +
        weights['rouge-1'] * rouge_scores['rouge-1'] +
        weights['rouge-2'] * rouge_scores['rouge-2'] +
        weights['rouge-l'] * rouge_scores['rouge-l'] +
        weights['cosine_similarity'] * cosine_sim +
        weights['structural_similarity'] * structural_sim['title_similarity'] +
        weights['information_retrieval'] * info_retrieval +
        weights['code_consistency'] * code_consistency +
        weights['readability'] * readability
    )
    
    return {
        'bleu': bleu_score,
        'rouge': rouge_scores,
        'cosine_similarity': cosine_sim,
        'structural_similarity': structural_sim,
        'information_retrieval': info_retrieval,
        'code_consistency': code_consistency,
        'readability': readability,
        'weighted_score': weighted_score
    }

def generate_readme(repo_content, model, client):
    system_prompt = """You are an AI assistant tasked with creating a README.md file for a GitHub repository. 
    Your response should contain ONLY the content of the README.md file, without any additional explanations or markdown code blocks. 
    The README should include the following sections:
    1. Project Title
    2. Description
    3. Installation
    4. Usage
    5. Features
    6. Contributing
    7. License
    Ensure that your response is well-structured, informative, and directly usable as a README.md file."""

    user_prompt = f"Here is the content of the repository:\n\n{repo_content}\n\nBased on this content, please generate a README.md file."

    response = client.chat.completions.create(
        model=model,
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ]
    )
    
    return response.choices[0].message.content

def main(args):
    openai.api_key = os.getenv("OPENAI_API_KEY")
    if not openai.api_key:
        raise ValueError("OPENAI_API_KEY environment variable is not set")

    client = openai.OpenAI(base_url=args.base_url) if args.base_url else openai.OpenAI()

    dataset = load_dataset("patched-codes/generate-readme-eval")
    
    results = []
    
    for item in tqdm(dataset['test'], desc="Processing repos"):
        try:
            generated_readme = generate_readme(item['repo_content'], args.model, client)
            eval_result = evaluate_readme(item['repo_readme'], generated_readme, item['repo_content'])
            # Add repo_name to the eval_result
            eval_result['repo_name'] = item['repo_name']
            results.append(eval_result)
        except Exception as e:
            print(f"Error processing repo {item['repo_name']}: {e}")
            continue
    
    average_scores = {
        'bleu': np.mean([r['bleu'] for r in results]),
        'rouge-1': np.mean([r['rouge']['rouge-1'] for r in results]),
        'rouge-2': np.mean([r['rouge']['rouge-2'] for r in results]),
        'rouge-l': np.mean([r['rouge']['rouge-l'] for r in results]),
        'cosine_similarity': np.mean([r['cosine_similarity'] for r in results]),
        'title_similarity': np.mean([r['structural_similarity']['title_similarity'] for r in results]),
        'information_retrieval': np.mean([r['information_retrieval'] for r in results]),
        'code_consistency': np.mean([r['code_consistency'] for r in results]),
        'readability': np.mean([r['readability'] for r in results]),
        'weighted_score': np.mean([r['weighted_score'] for r in results])
    }
    
    # Print results to console
    print("\nEvaluation Results:")
    for metric, score in average_scores.items():
        print(f"{metric}: {score:.4f}")

    # Save results to log file
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    log_filename = f"{args.model}_results_{timestamp}.log"
    
    with open(log_filename, 'w') as log_file:
        log_file.write(f"Evaluation Results for model: {args.model}\n")
        log_file.write(f"Timestamp: {timestamp}\n\n")
        log_file.write("Average Scores:\n")
        for metric, score in average_scores.items():
            log_file.write(f"{metric}: {score:.4f}\n")
        
        log_file.write(f"\nDetailed Results:\n")
        for result in results:
            log_file.write(f"\nRepository: {result['repo_name']}\n")
            log_file.write("Scores:\n")
            log_file.write(f"  BLEU: {result['bleu']:.4f}\n")
            log_file.write(f"  ROUGE-1: {result['rouge']['rouge-1']:.4f}\n")
            log_file.write(f"  ROUGE-2: {result['rouge']['rouge-2']:.4f}\n")
            log_file.write(f"  ROUGE-L: {result['rouge']['rouge-l']:.4f}\n")
            log_file.write(f"  Cosine Similarity: {result['cosine_similarity']:.4f}\n")
            log_file.write(f"  Title Similarity: {result['structural_similarity']['title_similarity']:.4f}\n")
            log_file.write(f"  Information Retrieval: {result['information_retrieval']:.4f}\n")
            log_file.write(f"  Code Consistency: {result['code_consistency']:.4f}\n")
            log_file.write(f"  Readability: {result['readability']:.4f}\n")
            log_file.write(f"  Weighted Score: {result['weighted_score']:.4f}\n")

    print(f"\nResults saved to {log_filename}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate and evaluate README files using OpenAI API")
    parser.add_argument("model", help="OpenAI model to use")
    parser.add_argument("--base_url", help="Optional base URL for OpenAI API", default=None)
    args = parser.parse_args()
    
    main(args)