--- license: cc-by-4.0 task_categories: - question-answering size_categories: - n<1K arxiv: - https://arxiv.org/pdf/2412.13147 configs: - config_name: v202412_CNMO_en data_files: - split: test path: 202412/CNMO_en.jsonl - config_name: v202412_CNMO_cn data_files: - split: test path: 202412/CNMO_cn.jsonl - config_name: v202412_CCEE_en data_files: - split: test path: 202412/CCEE_en.jsonl - config_name: v202412_CCEE_cn data_files: - split: test path: 202412/CCEE_cn.jsonl - config_name: v202412_AMC_en data_files: - split: test path: 202412/AMC_en.jsonl - config_name: v202412_AMC_cn data_files: - split: test path: 202412/AMC_cn.jsonl - config_name: v202412_WLPMC_en data_files: - split: test path: 202412/WLPMC_en.jsonl - config_name: v202412_WLPMC_cn data_files: - split: test path: 202412/WLPMC_cn.jsonl language: - en --- # Dataset Card for "LiveMathBench" - **Homepage:** [https://open-compass.github.io/GPassK/](https://open-compass.github.io/GPassK/) - **Repository:** [https://github.com/open-compass/GPassK](https://github.com/open-compass/GPassK) - **Paper:** [Are Your LLMs Capable of Stable Reasoning?](https://arxiv.org/abs/2412.13147) ## Introduction LiveMathBench is an mathematical dataset, specifically designed to include challenging latest question sets from various mathematical competitions, aiming to avoid data contamination issues in existing LLMs and public math benchmarks. ## Leaderboard The Latest leaderboard is provided in our [leaderboard](https://open-compass.github.io/GPassK/). ## Data ### v202412 The 202412 version of LiveMathBench contains 238 mathematical questions from the China National Mathematical Olympiad (CNMO), the China’s College Entrance Examination (CCEE), the American Mathematics Competition (AMC), and the William Lowell Putnam Mathematical Competition (WLPMC). Here is an example: ``` question: A sequence $y_1,y_2,\dots,y_k$ of real numbers is called \emph{zigzag} if $k=1$, or if $y_2-y_1, y_3-y_2, \dots, y_k-y_{k-1}$ are nonzero and alternate in sign. Let $X_1,X_2,\dots,X_n$ be chosen independently from the uniform distribution on $[0,1]$. Let $a(X_1,X_2,\dots,X_n)$ be the largest value of $k$ for which there exists an increasing sequence of integers $i_1,i_2,\\dots,i_k$ such that $X_{i_1},X_{i_2},\dots,X_{i_k}$ is zigzag. Find the expected value of $a(X_1,X_2,\dots,X_n)$ for $n \geq 2$. answer: $\frac{2n+2}{3}$ question_type: Problem-Solving ``` Citation: ``` @article{liu2024your, title={Are Your LLMs Capable of Stable Reasoning?}, author={Liu, Junnan and Liu, Hongwei and Xiao, Linchen and Wang, Ziyi and Liu, Kuikun and Gao, Songyang and Zhang, Wenwei and Zhang, Songyang and Chen, Kai}, journal={arXiv preprint arXiv:2412.13147}, year={2024} } ```