Datasets:
RichardWang
commited on
Commit
·
1b317da
1
Parent(s):
cf26a67
add ontonotes_conll dataset (#3853)
Browse files* add ontonotesv5_conll2012 dataset
* Apply suggestions from code review
Co-authored-by: Quentin Lhoest <[email protected]>
* rename, fix doc, fix dummy_data
* fix flake8
* Apply suggestions from code review
* typo
Co-authored-by: Quentin Lhoest <[email protected]>
Commit from https://github.com/huggingface/datasets/commit/8f205aa1c722cfc7479a714ae44cf1f712ebb61d
- README.md +233 -0
- conll2012_ontonotesv5.py +819 -0
- dataset_infos.json +1 -0
- dummy/arabic_v4/1.0.0/dummy_data.zip +3 -0
- dummy/chinese_v4/1.0.0/dummy_data.zip +3 -0
- dummy/english_v12/1.0.0/dummy_data.zip +3 -0
- dummy/english_v4/1.0.0/dummy_data.zip +3 -0
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- ar
|
8 |
+
- en
|
9 |
+
- zh
|
10 |
+
licenses:
|
11 |
+
- cc-by-nc-nd-4-0
|
12 |
+
multilinguality:
|
13 |
+
- multilingual
|
14 |
+
paperswithcode_id: ontonotes-5-0
|
15 |
+
pretty_name: CoNLL2012 shared task data based on OntoNotes 5-0
|
16 |
+
size_categories:
|
17 |
+
- 10K<n<100K
|
18 |
+
source_datasets:
|
19 |
+
- original
|
20 |
+
task_categories:
|
21 |
+
- structure-prediction
|
22 |
+
task_ids:
|
23 |
+
- named-entity-recognition
|
24 |
+
- part-of-speech-tagging
|
25 |
+
- semantic-role-labeling
|
26 |
+
- coreference-resolution
|
27 |
+
- parsing
|
28 |
+
- lemmatization
|
29 |
+
- word-sense-disambiguation
|
30 |
+
---
|
31 |
+
|
32 |
+
# Dataset Card for CoNLL2012 shared task data based on OntoNotes 5.0
|
33 |
+
|
34 |
+
## Table of Contents
|
35 |
+
- [Table of Contents](#table-of-contents)
|
36 |
+
- [Dataset Description](#dataset-description)
|
37 |
+
- [Dataset Summary](#dataset-summary)
|
38 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
39 |
+
- [Languages](#languages)
|
40 |
+
- [Dataset Structure](#dataset-structure)
|
41 |
+
- [Data Instances](#data-instances)
|
42 |
+
- [Data Fields](#data-fields)
|
43 |
+
- [Data Splits](#data-splits)
|
44 |
+
- [Dataset Creation](#dataset-creation)
|
45 |
+
- [Curation Rationale](#curation-rationale)
|
46 |
+
- [Source Data](#source-data)
|
47 |
+
- [Annotations](#annotations)
|
48 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
49 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
50 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
51 |
+
- [Discussion of Biases](#discussion-of-biases)
|
52 |
+
- [Other Known Limitations](#other-known-limitations)
|
53 |
+
- [Additional Information](#additional-information)
|
54 |
+
- [Dataset Curators](#dataset-curators)
|
55 |
+
- [Licensing Information](#licensing-information)
|
56 |
+
- [Citation Information](#citation-information)
|
57 |
+
- [Contributions](#contributions)
|
58 |
+
|
59 |
+
## Dataset Description
|
60 |
+
|
61 |
+
- **Homepage:** [CoNLL-2012 Shared Task](https://conll.cemantix.org/2012/data.html), [Author's page](https://cemantix.org/data/ontonotes.html)
|
62 |
+
- **Repository:** [Mendeley](https://data.mendeley.com/datasets/zmycy7t9h9)
|
63 |
+
- **Paper:** [Towards Robust Linguistic Analysis using OntoNotes](https://aclanthology.org/W13-3516/)
|
64 |
+
- **Leaderboard:**
|
65 |
+
- **Point of Contact:**
|
66 |
+
|
67 |
+
### Dataset Summary
|
68 |
+
|
69 |
+
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
|
70 |
+
multilingual corpus manually annotated with syntactic, semantic and discourse information.
|
71 |
+
|
72 |
+
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
|
73 |
+
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
|
74 |
+
|
75 |
+
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
|
76 |
+
|
77 |
+
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
|
78 |
+
|
79 |
+
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
|
80 |
+
|
81 |
+
### Supported Tasks and Leaderboards
|
82 |
+
|
83 |
+
- [Named Entity Recognition on Ontonotes v5 (English)](https://paperswithcode.com/sota/named-entity-recognition-ner-on-ontonotes-v5)
|
84 |
+
- [Coreference Resolution on OntoNotes](https://paperswithcode.com/sota/coreference-resolution-on-ontonotes)
|
85 |
+
- [Semantic Role Labeling on OntoNotes](https://paperswithcode.com/sota/semantic-role-labeling-on-ontonotes)
|
86 |
+
- ...
|
87 |
+
|
88 |
+
### Languages
|
89 |
+
|
90 |
+
V4 data for Arabic, Chinese, English, and V12 data for English
|
91 |
+
|
92 |
+
## Dataset Structure
|
93 |
+
|
94 |
+
### Data Instances
|
95 |
+
|
96 |
+
```
|
97 |
+
{
|
98 |
+
{'document_id': 'nw/wsj/23/wsj_2311',
|
99 |
+
'sentences': [{'part_id': 0,
|
100 |
+
'words': ['CONCORDE', 'trans-Atlantic', 'flights', 'are', '$', '2, 'to', 'Paris', 'and', '$', '3, 'to', 'London', '.']},
|
101 |
+
'pos_tags': [25, 18, 27, 43, 2, 12, 17, 25, 11, 2, 12, 17, 25, 7],
|
102 |
+
'parse_tree': '(TOP(S(NP (NNP CONCORDE) (JJ trans-Atlantic) (NNS flights) )(VP (VBP are) (NP(NP(NP ($ $) (CD 2,400) )(PP (IN to) (NP (NNP Paris) ))) (CC and) (NP(NP ($ $) (CD 3,200) )(PP (IN to) (NP (NNP London) ))))) (. .) ))',
|
103 |
+
'predicate_lemmas': [None, None, None, 'be', None, None, None, None, None, None, None, None, None, None],
|
104 |
+
'predicate_framenet_ids': [None, None, None, '01', None, None, None, None, None, None, None, None, None, None],
|
105 |
+
'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None, None],
|
106 |
+
'speaker': None,
|
107 |
+
'named_entities': [7, 6, 0, 0, 0, 15, 0, 5, 0, 0, 15, 0, 5, 0],
|
108 |
+
'srl_frames': [{'frames': ['B-ARG1', 'I-ARG1', 'I-ARG1', 'B-V', 'B-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'O'],
|
109 |
+
'verb': 'are'}],
|
110 |
+
'coref_spans': [],
|
111 |
+
{'part_id': 0,
|
112 |
+
'words': ['In', 'a', 'Centennial', 'Journal', 'article', 'Oct.', '5', ',', 'the', 'fares', 'were', 'reversed', '.']}]}
|
113 |
+
'pos_tags': [17, 13, 25, 25, 24, 25, 12, 4, 13, 27, 40, 42, 7],
|
114 |
+
'parse_tree': '(TOP(S(PP (IN In) (NP (DT a) (NML (NNP Centennial) (NNP Journal) ) (NN article) ))(NP (NNP Oct.) (CD 5) ) (, ,) (NP (DT the) (NNS fares) )(VP (VBD were) (VP (VBN reversed) )) (. .) ))',
|
115 |
+
'predicate_lemmas': [None, None, None, None, None, None, None, None, None, None, None, 'reverse', None],
|
116 |
+
'predicate_framenet_ids': [None, None, None, None, None, None, None, None, None, None, None, '01', None],
|
117 |
+
'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None],
|
118 |
+
'speaker': None,
|
119 |
+
'named_entities': [0, 0, 4, 22, 0, 12, 30, 0, 0, 0, 0, 0, 0],
|
120 |
+
'srl_frames': [{'frames': ['B-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'B-ARGM-TMP', 'I-ARGM-TMP', 'O', 'B-ARG1', 'I-ARG1', 'O', 'B-V', 'O'],
|
121 |
+
'verb': 'reversed'}],
|
122 |
+
'coref_spans': [],
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
### Data Fields
|
127 |
+
|
128 |
+
- **`document_id`** (*`str`*): This is a variation on the document filename
|
129 |
+
- **`sentences`** (*`List[Dict]`*): All sentences of the same document are in a single example for the convenience of concatenating sentences.
|
130 |
+
|
131 |
+
Every element in `sentences` is a *`Dict`* composed of the following data fields:
|
132 |
+
- **`part_id`** (*`int`*) : Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
|
133 |
+
- **`words`** (*`List[str]`*) :
|
134 |
+
- **`pos_tags`** (*`List[ClassLabel]` or `List[str]`*) : This is the Penn-Treebank-style part of speech. When parse information is missing, all parts of speech except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag.
|
135 |
+
- tag set : Note tag sets below are founded by scanning all the data, and I found it seems to be a little bit different from officially stated tag sets. See official documents in the [Mendeley repo](https://data.mendeley.com/datasets/zmycy7t9h9)
|
136 |
+
- arabic : str. Because pos tag in Arabic is compounded and complex, hard to represent it by `ClassLabel`
|
137 |
+
- chinese v4 : `datasets.ClassLabel(num_classes=36, names=["X", "AD", "AS", "BA", "CC", "CD", "CS", "DEC", "DEG", "DER", "DEV", "DT", "ETC", "FW", "IJ", "INF", "JJ", "LB", "LC", "M", "MSP", "NN", "NR", "NT", "OD", "ON", "P", "PN", "PU", "SB", "SP", "URL", "VA", "VC", "VE", "VV",])`, where `X` is for pos tag missing
|
138 |
+
- english v4 : `datasets.ClassLabel(num_classes=49, names=["XX", "``", "$", "''", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`".
|
139 |
+
- english v12 : `datasets.ClassLabel(num_classes=51, names="english_v12": ["XX", "``", "$", "''", "*", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "VERB", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`".
|
140 |
+
- **`parse_tree`** (*`Optional[str]`*) : An serialized NLTK Tree representing the parse. It includes POS tags as pre-terminal nodes. When the parse information is missing, the parse will be `None`.
|
141 |
+
- **`predicate_lemmas`** (*`List[Optional[str]]`*) : The predicate lemma of the words for which we have semantic role information or word sense information. All other indices are `None`.
|
142 |
+
- **`predicate_framenet_ids`** (*`List[Optional[int]]`*) : The PropBank frameset ID of the lemmas in predicate_lemmas, or `None`.
|
143 |
+
- **`word_senses`** (*`List[Optional[float]]`*) : The word senses for the words in the sentence, or None. These are floats because the word sense can have values after the decimal, like 1.1.
|
144 |
+
- **`speaker`** (*`Optional[str]`*) : This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. When it is not available, it will be `None`.
|
145 |
+
- **`named_entities`** (*`List[ClassLabel]`*) : The BIO tags for named entities in the sentence.
|
146 |
+
- tag set : `datasets.ClassLabel(num_classes=37, names=["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE",])`
|
147 |
+
- **`srl_frames`** (*`List[{"word":str, "frames":List[str]}]`*) : A dictionary keyed by the verb in the sentence for the given Propbank frame labels, in a BIO format.
|
148 |
+
- **`coref spans`** (*`List[List[int]]`*) : The spans for entity mentions involved in coreference resolution within the sentence. Each element is a tuple composed of (cluster_id, start_index, end_index). Indices are inclusive.
|
149 |
+
|
150 |
+
### Data Splits
|
151 |
+
|
152 |
+
Each dataset (arabic_v4, chinese_v4, english_v4, english_v12) has 3 splits: _train_, _validation_, and _test_
|
153 |
+
|
154 |
+
## Dataset Creation
|
155 |
+
|
156 |
+
### Curation Rationale
|
157 |
+
|
158 |
+
[More Information Needed]
|
159 |
+
|
160 |
+
### Source Data
|
161 |
+
|
162 |
+
#### Initial Data Collection and Normalization
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Who are the source language producers?
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
### Annotations
|
171 |
+
|
172 |
+
#### Annotation process
|
173 |
+
|
174 |
+
[More Information Needed]
|
175 |
+
|
176 |
+
#### Who are the annotators?
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
### Personal and Sensitive Information
|
181 |
+
|
182 |
+
[More Information Needed]
|
183 |
+
|
184 |
+
## Considerations for Using the Data
|
185 |
+
|
186 |
+
### Social Impact of Dataset
|
187 |
+
|
188 |
+
[More Information Needed]
|
189 |
+
|
190 |
+
### Discussion of Biases
|
191 |
+
|
192 |
+
[More Information Needed]
|
193 |
+
|
194 |
+
### Other Known Limitations
|
195 |
+
|
196 |
+
[More Information Needed]
|
197 |
+
|
198 |
+
## Additional Information
|
199 |
+
|
200 |
+
### Dataset Curators
|
201 |
+
|
202 |
+
[More Information Needed]
|
203 |
+
|
204 |
+
### Licensing Information
|
205 |
+
|
206 |
+
[More Information Needed]
|
207 |
+
|
208 |
+
### Citation Information
|
209 |
+
|
210 |
+
```
|
211 |
+
@inproceedings{pradhan-etal-2013-towards,
|
212 |
+
title = "Towards Robust Linguistic Analysis using {O}nto{N}otes",
|
213 |
+
author = {Pradhan, Sameer and
|
214 |
+
Moschitti, Alessandro and
|
215 |
+
Xue, Nianwen and
|
216 |
+
Ng, Hwee Tou and
|
217 |
+
Bj{\"o}rkelund, Anders and
|
218 |
+
Uryupina, Olga and
|
219 |
+
Zhang, Yuchen and
|
220 |
+
Zhong, Zhi},
|
221 |
+
booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
|
222 |
+
month = aug,
|
223 |
+
year = "2013",
|
224 |
+
address = "Sofia, Bulgaria",
|
225 |
+
publisher = "Association for Computational Linguistics",
|
226 |
+
url = "https://aclanthology.org/W13-3516",
|
227 |
+
pages = "143--152",
|
228 |
+
}
|
229 |
+
```
|
230 |
+
|
231 |
+
### Contributions
|
232 |
+
|
233 |
+
Thanks to [@richarddwang](https://github.com/richarddwang) for adding this dataset.
|
conll2012_ontonotesv5.py
ADDED
@@ -0,0 +1,819 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""CoNLL2012 shared task data based on OntoNotes 5.0"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import defaultdict
|
19 |
+
from glob import glob
|
20 |
+
from typing import DefaultDict, Iterator, List, Optional, Tuple
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{pradhan-etal-2013-towards,
|
27 |
+
title = "Towards Robust Linguistic Analysis using {O}nto{N}otes",
|
28 |
+
author = {Pradhan, Sameer and
|
29 |
+
Moschitti, Alessandro and
|
30 |
+
Xue, Nianwen and
|
31 |
+
Ng, Hwee Tou and
|
32 |
+
Bj{\"o}rkelund, Anders and
|
33 |
+
Uryupina, Olga and
|
34 |
+
Zhang, Yuchen and
|
35 |
+
Zhong, Zhi},
|
36 |
+
booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
|
37 |
+
month = aug,
|
38 |
+
year = "2013",
|
39 |
+
address = "Sofia, Bulgaria",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://aclanthology.org/W13-3516",
|
42 |
+
pages = "143--152",
|
43 |
+
}
|
44 |
+
|
45 |
+
Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, \
|
46 |
+
Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, \
|
47 |
+
Mohammed El-Bachouti, Robert Belvin, Ann Houston. \
|
48 |
+
OntoNotes Release 5.0 LDC2013T19. \
|
49 |
+
Web Download. Philadelphia: Linguistic Data Consortium, 2013.
|
50 |
+
"""
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
|
54 |
+
multilingual corpus manually annotated with syntactic, semantic and discourse information.
|
55 |
+
|
56 |
+
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
|
57 |
+
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
|
58 |
+
|
59 |
+
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
|
60 |
+
|
61 |
+
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
|
62 |
+
|
63 |
+
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
|
64 |
+
"""
|
65 |
+
|
66 |
+
_URL = "https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip"
|
67 |
+
|
68 |
+
|
69 |
+
class Conll2012Ontonotesv5Config(datasets.BuilderConfig):
|
70 |
+
"""BuilderConfig for the CoNLL formatted OntoNotes dataset."""
|
71 |
+
|
72 |
+
def __init__(self, language=None, conll_version=None, **kwargs):
|
73 |
+
"""BuilderConfig for the CoNLL formatted OntoNotes dataset.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
language: string, one of the language {"english", "chinese", "arabic"} .
|
77 |
+
conll_version: string, "v4" or "v12". Note there is only English v12.
|
78 |
+
**kwargs: keyword arguments forwarded to super.
|
79 |
+
"""
|
80 |
+
assert language in ["english", "chinese", "arabic"]
|
81 |
+
assert conll_version in ["v4", "v12"]
|
82 |
+
if conll_version == "v12":
|
83 |
+
assert language == "english"
|
84 |
+
super(Conll2012Ontonotesv5Config, self).__init__(
|
85 |
+
name=f"{language}_{conll_version}",
|
86 |
+
description=f"{conll_version} of CoNLL formatted OntoNotes dataset for {language}.",
|
87 |
+
version=datasets.Version("1.0.0"), # hf dataset script version
|
88 |
+
**kwargs,
|
89 |
+
)
|
90 |
+
self.language = language
|
91 |
+
self.conll_version = conll_version
|
92 |
+
|
93 |
+
|
94 |
+
class Conll2012Ontonotesv5(datasets.GeneratorBasedBuilder):
|
95 |
+
"""The CoNLL formatted OntoNotes dataset."""
|
96 |
+
|
97 |
+
BUILDER_CONFIGS = [
|
98 |
+
Conll2012Ontonotesv5Config(
|
99 |
+
language=lang,
|
100 |
+
conll_version="v4",
|
101 |
+
)
|
102 |
+
for lang in ["english", "chinese", "arabic"]
|
103 |
+
] + [
|
104 |
+
Conll2012Ontonotesv5Config(
|
105 |
+
language="english",
|
106 |
+
conll_version="v12",
|
107 |
+
)
|
108 |
+
]
|
109 |
+
|
110 |
+
def _info(self):
|
111 |
+
lang = self.config.language
|
112 |
+
conll_version = self.config.conll_version
|
113 |
+
if lang == "arabic":
|
114 |
+
pos_tag_feature = datasets.Value("string")
|
115 |
+
else:
|
116 |
+
tag_set = _POS_TAGS[f"{lang}_{conll_version}"]
|
117 |
+
pos_tag_feature = datasets.ClassLabel(num_classes=len(tag_set), names=tag_set)
|
118 |
+
|
119 |
+
return datasets.DatasetInfo(
|
120 |
+
description=_DESCRIPTION,
|
121 |
+
features=datasets.Features(
|
122 |
+
{
|
123 |
+
"document_id": datasets.Value("string"),
|
124 |
+
"sentences": [
|
125 |
+
{
|
126 |
+
"part_id": datasets.Value("int32"),
|
127 |
+
"words": datasets.Sequence(datasets.Value("string")),
|
128 |
+
"pos_tags": datasets.Sequence(pos_tag_feature),
|
129 |
+
"parse_tree": datasets.Value("string"),
|
130 |
+
"predicate_lemmas": datasets.Sequence(datasets.Value("string")),
|
131 |
+
"predicate_framenet_ids": datasets.Sequence(datasets.Value("string")),
|
132 |
+
"word_senses": datasets.Sequence(datasets.Value("float32")),
|
133 |
+
"speaker": datasets.Value("string"),
|
134 |
+
"named_entities": datasets.Sequence(
|
135 |
+
datasets.ClassLabel(num_classes=37, names=_NAMED_ENTITY_TAGS)
|
136 |
+
),
|
137 |
+
"srl_frames": [
|
138 |
+
{
|
139 |
+
"verb": datasets.Value("string"),
|
140 |
+
"frames": datasets.Sequence(datasets.Value("string")),
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"coref_spans": datasets.Sequence(datasets.Sequence(datasets.Value("int32"), length=3)),
|
144 |
+
}
|
145 |
+
],
|
146 |
+
}
|
147 |
+
),
|
148 |
+
homepage="https://conll.cemantix.org/2012/introduction.html",
|
149 |
+
citation=_CITATION,
|
150 |
+
)
|
151 |
+
|
152 |
+
def _split_generators(self, dl_manager):
|
153 |
+
lang = self.config.language
|
154 |
+
conll_version = self.config.conll_version
|
155 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
156 |
+
data_zip = glob(os.path.join(dl_dir, "**/conll-2012*"), recursive=True)[0]
|
157 |
+
ext_dir = dl_manager.extract(data_zip)
|
158 |
+
data_dir = os.path.join(ext_dir, f"conll-2012/{conll_version}/data")
|
159 |
+
|
160 |
+
return [
|
161 |
+
datasets.SplitGenerator(
|
162 |
+
name=datasets.Split.TRAIN,
|
163 |
+
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"train/data/{lang}")},
|
164 |
+
),
|
165 |
+
datasets.SplitGenerator(
|
166 |
+
name=datasets.Split.VALIDATION,
|
167 |
+
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"development/data/{lang}")},
|
168 |
+
),
|
169 |
+
datasets.SplitGenerator(
|
170 |
+
name=datasets.Split.TEST,
|
171 |
+
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"test/data/{lang}")},
|
172 |
+
),
|
173 |
+
]
|
174 |
+
|
175 |
+
def _generate_examples(self, conll_files_directory):
|
176 |
+
"""Yields examples."""
|
177 |
+
conll_files = sorted(glob(os.path.join(conll_files_directory, "**/*gold_conll"), recursive=True))
|
178 |
+
for idx, conll_file in enumerate(conll_files):
|
179 |
+
sentences = []
|
180 |
+
for sent in Ontonotes().sentence_iterator(conll_file):
|
181 |
+
document_id = sent.document_id
|
182 |
+
sentences.append(
|
183 |
+
{
|
184 |
+
"part_id": sent.sentence_id, # should be part id, according to https://conll.cemantix.org/2012/data.html
|
185 |
+
"words": sent.words,
|
186 |
+
"pos_tags": sent.pos_tags,
|
187 |
+
"parse_tree": sent.parse_tree,
|
188 |
+
"predicate_lemmas": sent.predicate_lemmas,
|
189 |
+
"predicate_framenet_ids": sent.predicate_framenet_ids,
|
190 |
+
"word_senses": sent.word_senses,
|
191 |
+
"speaker": sent.speakers[0],
|
192 |
+
"named_entities": sent.named_entities,
|
193 |
+
"srl_frames": [{"verb": f[0], "frames": f[1]} for f in sent.srl_frames],
|
194 |
+
"coref_spans": [(c[0], *c[1]) for c in sent.coref_spans],
|
195 |
+
}
|
196 |
+
)
|
197 |
+
yield idx, {"document_id": document_id, "sentences": sentences}
|
198 |
+
|
199 |
+
|
200 |
+
# --------------------------------------------------------------------------------------------------------
|
201 |
+
# Tag set
|
202 |
+
_NAMED_ENTITY_TAGS = [
|
203 |
+
"O", # out of named entity
|
204 |
+
"B-PERSON",
|
205 |
+
"I-PERSON",
|
206 |
+
"B-NORP",
|
207 |
+
"I-NORP",
|
208 |
+
"B-FAC", # FACILITY
|
209 |
+
"I-FAC",
|
210 |
+
"B-ORG", # ORGANIZATION
|
211 |
+
"I-ORG",
|
212 |
+
"B-GPE",
|
213 |
+
"I-GPE",
|
214 |
+
"B-LOC",
|
215 |
+
"I-LOC",
|
216 |
+
"B-PRODUCT",
|
217 |
+
"I-PRODUCT",
|
218 |
+
"B-DATE",
|
219 |
+
"I-DATE",
|
220 |
+
"B-TIME",
|
221 |
+
"I-TIME",
|
222 |
+
"B-PERCENT",
|
223 |
+
"I-PERCENT",
|
224 |
+
"B-MONEY",
|
225 |
+
"I-MONEY",
|
226 |
+
"B-QUANTITY",
|
227 |
+
"I-QUANTITY",
|
228 |
+
"B-ORDINAL",
|
229 |
+
"I-ORDINAL",
|
230 |
+
"B-CARDINAL",
|
231 |
+
"I-CARDINAL",
|
232 |
+
"B-EVENT",
|
233 |
+
"I-EVENT",
|
234 |
+
"B-WORK_OF_ART",
|
235 |
+
"I-WORK_OF_ART",
|
236 |
+
"B-LAW",
|
237 |
+
"I-LAW",
|
238 |
+
"B-LANGUAGE",
|
239 |
+
"I-LANGUAGE",
|
240 |
+
]
|
241 |
+
|
242 |
+
_POS_TAGS = {
|
243 |
+
"english_v4": [
|
244 |
+
"XX", # missing
|
245 |
+
"``",
|
246 |
+
"$",
|
247 |
+
"''",
|
248 |
+
",",
|
249 |
+
"-LRB-", # (
|
250 |
+
"-RRB-", # )
|
251 |
+
".",
|
252 |
+
":",
|
253 |
+
"ADD",
|
254 |
+
"AFX",
|
255 |
+
"CC",
|
256 |
+
"CD",
|
257 |
+
"DT",
|
258 |
+
"EX",
|
259 |
+
"FW",
|
260 |
+
"HYPH",
|
261 |
+
"IN",
|
262 |
+
"JJ",
|
263 |
+
"JJR",
|
264 |
+
"JJS",
|
265 |
+
"LS",
|
266 |
+
"MD",
|
267 |
+
"NFP",
|
268 |
+
"NN",
|
269 |
+
"NNP",
|
270 |
+
"NNPS",
|
271 |
+
"NNS",
|
272 |
+
"PDT",
|
273 |
+
"POS",
|
274 |
+
"PRP",
|
275 |
+
"PRP$",
|
276 |
+
"RB",
|
277 |
+
"RBR",
|
278 |
+
"RBS",
|
279 |
+
"RP",
|
280 |
+
"SYM",
|
281 |
+
"TO",
|
282 |
+
"UH",
|
283 |
+
"VB",
|
284 |
+
"VBD",
|
285 |
+
"VBG",
|
286 |
+
"VBN",
|
287 |
+
"VBP",
|
288 |
+
"VBZ",
|
289 |
+
"WDT",
|
290 |
+
"WP",
|
291 |
+
"WP$",
|
292 |
+
"WRB",
|
293 |
+
], # 49
|
294 |
+
"english_v12": [
|
295 |
+
"XX", # misssing
|
296 |
+
"``",
|
297 |
+
"$",
|
298 |
+
"''",
|
299 |
+
"*",
|
300 |
+
",",
|
301 |
+
"-LRB-", # (
|
302 |
+
"-RRB-", # )
|
303 |
+
".",
|
304 |
+
":",
|
305 |
+
"ADD",
|
306 |
+
"AFX",
|
307 |
+
"CC",
|
308 |
+
"CD",
|
309 |
+
"DT",
|
310 |
+
"EX",
|
311 |
+
"FW",
|
312 |
+
"HYPH",
|
313 |
+
"IN",
|
314 |
+
"JJ",
|
315 |
+
"JJR",
|
316 |
+
"JJS",
|
317 |
+
"LS",
|
318 |
+
"MD",
|
319 |
+
"NFP",
|
320 |
+
"NN",
|
321 |
+
"NNP",
|
322 |
+
"NNPS",
|
323 |
+
"NNS",
|
324 |
+
"PDT",
|
325 |
+
"POS",
|
326 |
+
"PRP",
|
327 |
+
"PRP$",
|
328 |
+
"RB",
|
329 |
+
"RBR",
|
330 |
+
"RBS",
|
331 |
+
"RP",
|
332 |
+
"SYM",
|
333 |
+
"TO",
|
334 |
+
"UH",
|
335 |
+
"VB",
|
336 |
+
"VBD",
|
337 |
+
"VBG",
|
338 |
+
"VBN",
|
339 |
+
"VBP",
|
340 |
+
"VBZ",
|
341 |
+
"VERB",
|
342 |
+
"WDT",
|
343 |
+
"WP",
|
344 |
+
"WP$",
|
345 |
+
"WRB",
|
346 |
+
], # 51
|
347 |
+
"chinese_v4": [
|
348 |
+
"X", # missing
|
349 |
+
"AD",
|
350 |
+
"AS",
|
351 |
+
"BA",
|
352 |
+
"CC",
|
353 |
+
"CD",
|
354 |
+
"CS",
|
355 |
+
"DEC",
|
356 |
+
"DEG",
|
357 |
+
"DER",
|
358 |
+
"DEV",
|
359 |
+
"DT",
|
360 |
+
"ETC",
|
361 |
+
"FW",
|
362 |
+
"IJ",
|
363 |
+
"INF",
|
364 |
+
"JJ",
|
365 |
+
"LB",
|
366 |
+
"LC",
|
367 |
+
"M",
|
368 |
+
"MSP",
|
369 |
+
"NN",
|
370 |
+
"NR",
|
371 |
+
"NT",
|
372 |
+
"OD",
|
373 |
+
"ON",
|
374 |
+
"P",
|
375 |
+
"PN",
|
376 |
+
"PU",
|
377 |
+
"SB",
|
378 |
+
"SP",
|
379 |
+
"URL",
|
380 |
+
"VA",
|
381 |
+
"VC",
|
382 |
+
"VE",
|
383 |
+
"VV",
|
384 |
+
], # 36
|
385 |
+
}
|
386 |
+
|
387 |
+
# --------------------------------------------------------------------------------------------------------
|
388 |
+
# The CoNLL(2012) file reader
|
389 |
+
# Modified the original code to get rid of extra package dependency.
|
390 |
+
# Original code: https://github.com/allenai/allennlp-models/blob/main/allennlp_models/common/ontonotes.py
|
391 |
+
|
392 |
+
|
393 |
+
class OntonotesSentence:
|
394 |
+
"""
|
395 |
+
A class representing the annotations available for a single CONLL formatted sentence.
|
396 |
+
# Parameters
|
397 |
+
document_id : `str`
|
398 |
+
This is a variation on the document filename
|
399 |
+
sentence_id : `int`
|
400 |
+
The integer ID of the sentence within a document.
|
401 |
+
words : `List[str]`
|
402 |
+
This is the tokens as segmented/tokenized in the bank.
|
403 |
+
pos_tags : `List[str]`
|
404 |
+
This is the Penn-Treebank-style part of speech. When parse information is missing,
|
405 |
+
all parts of speech except the one for which there is some sense or proposition
|
406 |
+
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
|
407 |
+
parse_tree : `nltk.Tree`
|
408 |
+
An nltk Tree representing the parse. It includes POS tags as pre-terminal nodes.
|
409 |
+
When the parse information is missing, the parse will be `None`.
|
410 |
+
predicate_lemmas : `List[Optional[str]]`
|
411 |
+
The predicate lemma of the words for which we have semantic role
|
412 |
+
information or word sense information. All other indices are `None`.
|
413 |
+
predicate_framenet_ids : `List[Optional[int]]`
|
414 |
+
The PropBank frameset ID of the lemmas in `predicate_lemmas`, or `None`.
|
415 |
+
word_senses : `List[Optional[float]]`
|
416 |
+
The word senses for the words in the sentence, or `None`. These are floats
|
417 |
+
because the word sense can have values after the decimal, like `1.1`.
|
418 |
+
speakers : `List[Optional[str]]`
|
419 |
+
The speaker information for the words in the sentence, if present, or `None`
|
420 |
+
This is the speaker or author name where available. Mostly in Broadcast Conversation
|
421 |
+
and Web Log data. When not available the rows are marked with an "-".
|
422 |
+
named_entities : `List[str]`
|
423 |
+
The BIO tags for named entities in the sentence.
|
424 |
+
srl_frames : `List[Tuple[str, List[str]]]`
|
425 |
+
A dictionary keyed by the verb in the sentence for the given
|
426 |
+
Propbank frame labels, in a BIO format.
|
427 |
+
coref_spans : `Set[TypedSpan]`
|
428 |
+
The spans for entity mentions involved in coreference resolution within the sentence.
|
429 |
+
Each element is a tuple composed of (cluster_id, (start_index, end_index)). Indices
|
430 |
+
are `inclusive`.
|
431 |
+
"""
|
432 |
+
|
433 |
+
def __init__(
|
434 |
+
self,
|
435 |
+
document_id: str,
|
436 |
+
sentence_id: int,
|
437 |
+
words: List[str],
|
438 |
+
pos_tags: List[str],
|
439 |
+
parse_tree: Optional[str],
|
440 |
+
predicate_lemmas: List[Optional[str]],
|
441 |
+
predicate_framenet_ids: List[Optional[str]],
|
442 |
+
word_senses: List[Optional[float]],
|
443 |
+
speakers: List[Optional[str]],
|
444 |
+
named_entities: List[str],
|
445 |
+
srl_frames: List[Tuple[str, List[str]]],
|
446 |
+
coref_spans,
|
447 |
+
) -> None:
|
448 |
+
|
449 |
+
self.document_id = document_id
|
450 |
+
self.sentence_id = sentence_id
|
451 |
+
self.words = words
|
452 |
+
self.pos_tags = pos_tags
|
453 |
+
self.parse_tree = parse_tree
|
454 |
+
self.predicate_lemmas = predicate_lemmas
|
455 |
+
self.predicate_framenet_ids = predicate_framenet_ids
|
456 |
+
self.word_senses = word_senses
|
457 |
+
self.speakers = speakers
|
458 |
+
self.named_entities = named_entities
|
459 |
+
self.srl_frames = srl_frames
|
460 |
+
self.coref_spans = coref_spans
|
461 |
+
|
462 |
+
|
463 |
+
class Ontonotes:
|
464 |
+
"""
|
465 |
+
This `DatasetReader` is designed to read in the English OntoNotes v5.0 data
|
466 |
+
in the format used by the CoNLL 2011/2012 shared tasks. In order to use this
|
467 |
+
Reader, you must follow the instructions provided [here (v12 release):]
|
468 |
+
(https://cemantix.org/data/ontonotes.html), which will allow you to download
|
469 |
+
the CoNLL style annotations for the OntoNotes v5.0 release -- LDC2013T19.tgz
|
470 |
+
obtained from LDC.
|
471 |
+
Once you have run the scripts on the extracted data, you will have a folder
|
472 |
+
structured as follows:
|
473 |
+
```
|
474 |
+
conll-formatted-ontonotes-5.0/
|
475 |
+
── data
|
476 |
+
├── development
|
477 |
+
└── data
|
478 |
+
└── english
|
479 |
+
└── annotations
|
480 |
+
├── bc
|
481 |
+
├── bn
|
482 |
+
├── mz
|
483 |
+
├── nw
|
484 |
+
├── pt
|
485 |
+
├── tc
|
486 |
+
└── wb
|
487 |
+
├── test
|
488 |
+
└── data
|
489 |
+
└── english
|
490 |
+
└── annotations
|
491 |
+
├── bc
|
492 |
+
├── bn
|
493 |
+
├── mz
|
494 |
+
├── nw
|
495 |
+
├── pt
|
496 |
+
├── tc
|
497 |
+
└── wb
|
498 |
+
└── train
|
499 |
+
└── data
|
500 |
+
└── english
|
501 |
+
└── annotations
|
502 |
+
├── bc
|
503 |
+
├── bn
|
504 |
+
├── mz
|
505 |
+
├── nw
|
506 |
+
├── pt
|
507 |
+
├── tc
|
508 |
+
└── wb
|
509 |
+
```
|
510 |
+
The file path provided to this class can then be any of the train, test or development
|
511 |
+
directories(or the top level data directory, if you are not utilizing the splits).
|
512 |
+
The data has the following format, ordered by column.
|
513 |
+
1. Document ID : `str`
|
514 |
+
This is a variation on the document filename
|
515 |
+
2. Part number : `int`
|
516 |
+
Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
|
517 |
+
3. Word number : `int`
|
518 |
+
This is the word index of the word in that sentence.
|
519 |
+
4. Word : `str`
|
520 |
+
This is the token as segmented/tokenized in the Treebank. Initially the `*_skel` file
|
521 |
+
contain the placeholder [WORD] which gets replaced by the actual token from the
|
522 |
+
Treebank which is part of the OntoNotes release.
|
523 |
+
5. POS Tag : `str`
|
524 |
+
This is the Penn Treebank style part of speech. When parse information is missing,
|
525 |
+
all part of speeches except the one for which there is some sense or proposition
|
526 |
+
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
|
527 |
+
6. Parse bit : `str`
|
528 |
+
This is the bracketed structure broken before the first open parenthesis in the parse,
|
529 |
+
and the word/part-of-speech leaf replaced with a `*`. When the parse information is
|
530 |
+
missing, the first word of a sentence is tagged as `(TOP*` and the last word is tagged
|
531 |
+
as `*)` and all intermediate words are tagged with a `*`.
|
532 |
+
7. Predicate lemma : `str`
|
533 |
+
The predicate lemma is mentioned for the rows for which we have semantic role
|
534 |
+
information or word sense information. All other rows are marked with a "-".
|
535 |
+
8. Predicate Frameset ID : `int`
|
536 |
+
The PropBank frameset ID of the predicate in Column 7.
|
537 |
+
9. Word sense : `float`
|
538 |
+
This is the word sense of the word in Column 3.
|
539 |
+
10. Speaker/Author : `str`
|
540 |
+
This is the speaker or author name where available. Mostly in Broadcast Conversation
|
541 |
+
and Web Log data. When not available the rows are marked with an "-".
|
542 |
+
11. Named Entities : `str`
|
543 |
+
These columns identifies the spans representing various named entities. For documents
|
544 |
+
which do not have named entity annotation, each line is represented with an `*`.
|
545 |
+
12. Predicate Arguments : `str`
|
546 |
+
There is one column each of predicate argument structure information for the predicate
|
547 |
+
mentioned in Column 7. If there are no predicates tagged in a sentence this is a
|
548 |
+
single column with all rows marked with an `*`.
|
549 |
+
-1. Co-reference : `str`
|
550 |
+
Co-reference chain information encoded in a parenthesis structure. For documents that do
|
551 |
+
not have co-reference annotations, each line is represented with a "-".
|
552 |
+
"""
|
553 |
+
|
554 |
+
def dataset_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
|
555 |
+
"""
|
556 |
+
An iterator over the entire dataset, yielding all sentences processed.
|
557 |
+
"""
|
558 |
+
for conll_file in self.dataset_path_iterator(file_path):
|
559 |
+
yield from self.sentence_iterator(conll_file)
|
560 |
+
|
561 |
+
@staticmethod
|
562 |
+
def dataset_path_iterator(file_path: str) -> Iterator[str]:
|
563 |
+
"""
|
564 |
+
An iterator returning file_paths in a directory
|
565 |
+
containing CONLL-formatted files.
|
566 |
+
"""
|
567 |
+
for root, _, files in list(os.walk(file_path)):
|
568 |
+
for data_file in sorted(files):
|
569 |
+
# These are a relic of the dataset pre-processing. Every
|
570 |
+
# file will be duplicated - one file called filename.gold_skel
|
571 |
+
# and one generated from the preprocessing called filename.gold_conll.
|
572 |
+
if not data_file.endswith("gold_conll"):
|
573 |
+
continue
|
574 |
+
|
575 |
+
yield os.path.join(root, data_file)
|
576 |
+
|
577 |
+
def dataset_document_iterator(self, file_path: str) -> Iterator[List[OntonotesSentence]]:
|
578 |
+
"""
|
579 |
+
An iterator over CONLL formatted files which yields documents, regardless
|
580 |
+
of the number of document annotations in a particular file. This is useful
|
581 |
+
for conll data which has been preprocessed, such as the preprocessing which
|
582 |
+
takes place for the 2012 CONLL Coreference Resolution task.
|
583 |
+
"""
|
584 |
+
with open(file_path, "r", encoding="utf8") as open_file:
|
585 |
+
conll_rows = []
|
586 |
+
document: List[OntonotesSentence] = []
|
587 |
+
for line in open_file:
|
588 |
+
line = line.strip()
|
589 |
+
if line != "" and not line.startswith("#"):
|
590 |
+
# Non-empty line. Collect the annotation.
|
591 |
+
conll_rows.append(line)
|
592 |
+
else:
|
593 |
+
if conll_rows:
|
594 |
+
document.append(self._conll_rows_to_sentence(conll_rows))
|
595 |
+
conll_rows = []
|
596 |
+
if line.startswith("#end document"):
|
597 |
+
yield document
|
598 |
+
document = []
|
599 |
+
if document:
|
600 |
+
# Collect any stragglers or files which might not
|
601 |
+
# have the '#end document' format for the end of the file.
|
602 |
+
yield document
|
603 |
+
|
604 |
+
def sentence_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
|
605 |
+
"""
|
606 |
+
An iterator over the sentences in an individual CONLL formatted file.
|
607 |
+
"""
|
608 |
+
for document in self.dataset_document_iterator(file_path):
|
609 |
+
for sentence in document:
|
610 |
+
yield sentence
|
611 |
+
|
612 |
+
def _conll_rows_to_sentence(self, conll_rows: List[str]) -> OntonotesSentence:
|
613 |
+
document_id: str = None
|
614 |
+
sentence_id: int = None
|
615 |
+
# The words in the sentence.
|
616 |
+
sentence: List[str] = []
|
617 |
+
# The pos tags of the words in the sentence.
|
618 |
+
pos_tags: List[str] = []
|
619 |
+
# the pieces of the parse tree.
|
620 |
+
parse_pieces: List[str] = []
|
621 |
+
# The lemmatised form of the words in the sentence which
|
622 |
+
# have SRL or word sense information.
|
623 |
+
predicate_lemmas: List[str] = []
|
624 |
+
# The FrameNet ID of the predicate.
|
625 |
+
predicate_framenet_ids: List[str] = []
|
626 |
+
# The sense of the word, if available.
|
627 |
+
word_senses: List[float] = []
|
628 |
+
# The current speaker, if available.
|
629 |
+
speakers: List[str] = []
|
630 |
+
|
631 |
+
verbal_predicates: List[str] = []
|
632 |
+
span_labels: List[List[str]] = []
|
633 |
+
current_span_labels: List[str] = []
|
634 |
+
|
635 |
+
# Cluster id -> List of (start_index, end_index) spans.
|
636 |
+
clusters: DefaultDict[int, List[Tuple[int, int]]] = defaultdict(list)
|
637 |
+
# Cluster id -> List of start_indices which are open for this id.
|
638 |
+
coref_stacks: DefaultDict[int, List[int]] = defaultdict(list)
|
639 |
+
|
640 |
+
for index, row in enumerate(conll_rows):
|
641 |
+
conll_components = row.split()
|
642 |
+
|
643 |
+
document_id = conll_components[0]
|
644 |
+
sentence_id = int(conll_components[1])
|
645 |
+
word = conll_components[3]
|
646 |
+
pos_tag = conll_components[4]
|
647 |
+
parse_piece = conll_components[5]
|
648 |
+
|
649 |
+
# Replace brackets in text and pos tags
|
650 |
+
# with a different token for parse trees.
|
651 |
+
if pos_tag != "XX" and word != "XX":
|
652 |
+
if word == "(":
|
653 |
+
parse_word = "-LRB-"
|
654 |
+
elif word == ")":
|
655 |
+
parse_word = "-RRB-"
|
656 |
+
else:
|
657 |
+
parse_word = word
|
658 |
+
if pos_tag == "(":
|
659 |
+
pos_tag = "-LRB-"
|
660 |
+
if pos_tag == ")":
|
661 |
+
pos_tag = "-RRB-"
|
662 |
+
(left_brackets, right_hand_side) = parse_piece.split("*")
|
663 |
+
# only keep ')' if there are nested brackets with nothing in them.
|
664 |
+
right_brackets = right_hand_side.count(")") * ")"
|
665 |
+
parse_piece = f"{left_brackets} ({pos_tag} {parse_word}) {right_brackets}"
|
666 |
+
else:
|
667 |
+
# There are some bad annotations in the CONLL data.
|
668 |
+
# They contain no information, so to make this explicit,
|
669 |
+
# we just set the parse piece to be None which will result
|
670 |
+
# in the overall parse tree being None.
|
671 |
+
parse_piece = None
|
672 |
+
|
673 |
+
lemmatised_word = conll_components[6]
|
674 |
+
framenet_id = conll_components[7]
|
675 |
+
word_sense = conll_components[8]
|
676 |
+
speaker = conll_components[9]
|
677 |
+
|
678 |
+
if not span_labels:
|
679 |
+
# If this is the first word in the sentence, create
|
680 |
+
# empty lists to collect the NER and SRL BIO labels.
|
681 |
+
# We can't do this upfront, because we don't know how many
|
682 |
+
# components we are collecting, as a sentence can have
|
683 |
+
# variable numbers of SRL frames.
|
684 |
+
span_labels = [[] for _ in conll_components[10:-1]]
|
685 |
+
# Create variables representing the current label for each label
|
686 |
+
# sequence we are collecting.
|
687 |
+
current_span_labels = [None for _ in conll_components[10:-1]]
|
688 |
+
|
689 |
+
self._process_span_annotations_for_word(conll_components[10:-1], span_labels, current_span_labels)
|
690 |
+
|
691 |
+
# If any annotation marks this word as a verb predicate,
|
692 |
+
# we need to record its index. This also has the side effect
|
693 |
+
# of ordering the verbal predicates by their location in the
|
694 |
+
# sentence, automatically aligning them with the annotations.
|
695 |
+
word_is_verbal_predicate = any("(V" in x for x in conll_components[11:-1])
|
696 |
+
if word_is_verbal_predicate:
|
697 |
+
verbal_predicates.append(word)
|
698 |
+
|
699 |
+
self._process_coref_span_annotations_for_word(conll_components[-1], index, clusters, coref_stacks)
|
700 |
+
|
701 |
+
sentence.append(word)
|
702 |
+
pos_tags.append(pos_tag)
|
703 |
+
parse_pieces.append(parse_piece)
|
704 |
+
predicate_lemmas.append(lemmatised_word if lemmatised_word != "-" else None)
|
705 |
+
predicate_framenet_ids.append(framenet_id if framenet_id != "-" else None)
|
706 |
+
word_senses.append(float(word_sense) if word_sense != "-" else None)
|
707 |
+
speakers.append(speaker if speaker != "-" else None)
|
708 |
+
|
709 |
+
named_entities = span_labels[0]
|
710 |
+
srl_frames = [(predicate, labels) for predicate, labels in zip(verbal_predicates, span_labels[1:])]
|
711 |
+
|
712 |
+
if all(parse_pieces):
|
713 |
+
parse_tree = "".join(parse_pieces)
|
714 |
+
else:
|
715 |
+
parse_tree = None
|
716 |
+
coref_span_tuples = {(cluster_id, span) for cluster_id, span_list in clusters.items() for span in span_list}
|
717 |
+
return OntonotesSentence(
|
718 |
+
document_id,
|
719 |
+
sentence_id,
|
720 |
+
sentence,
|
721 |
+
pos_tags,
|
722 |
+
parse_tree,
|
723 |
+
predicate_lemmas,
|
724 |
+
predicate_framenet_ids,
|
725 |
+
word_senses,
|
726 |
+
speakers,
|
727 |
+
named_entities,
|
728 |
+
srl_frames,
|
729 |
+
coref_span_tuples,
|
730 |
+
)
|
731 |
+
|
732 |
+
@staticmethod
|
733 |
+
def _process_coref_span_annotations_for_word(
|
734 |
+
label: str,
|
735 |
+
word_index: int,
|
736 |
+
clusters: DefaultDict[int, List[Tuple[int, int]]],
|
737 |
+
coref_stacks: DefaultDict[int, List[int]],
|
738 |
+
) -> None:
|
739 |
+
"""
|
740 |
+
For a given coref label, add it to a currently open span(s), complete a span(s) or
|
741 |
+
ignore it, if it is outside of all spans. This method mutates the clusters and coref_stacks
|
742 |
+
dictionaries.
|
743 |
+
# Parameters
|
744 |
+
label : `str`
|
745 |
+
The coref label for this word.
|
746 |
+
word_index : `int`
|
747 |
+
The word index into the sentence.
|
748 |
+
clusters : `DefaultDict[int, List[Tuple[int, int]]]`
|
749 |
+
A dictionary mapping cluster ids to lists of inclusive spans into the
|
750 |
+
sentence.
|
751 |
+
coref_stacks : `DefaultDict[int, List[int]]`
|
752 |
+
Stacks for each cluster id to hold the start indices of active spans (spans
|
753 |
+
which we are inside of when processing a given word). Spans with the same id
|
754 |
+
can be nested, which is why we collect these opening spans on a stack, e.g:
|
755 |
+
[Greg, the baker who referred to [himself]_ID1 as 'the bread man']_ID1
|
756 |
+
"""
|
757 |
+
if label != "-":
|
758 |
+
for segment in label.split("|"):
|
759 |
+
# The conll representation of coref spans allows spans to
|
760 |
+
# overlap. If spans end or begin at the same word, they are
|
761 |
+
# separated by a "|".
|
762 |
+
if segment[0] == "(":
|
763 |
+
# The span begins at this word.
|
764 |
+
if segment[-1] == ")":
|
765 |
+
# The span begins and ends at this word (single word span).
|
766 |
+
cluster_id = int(segment[1:-1])
|
767 |
+
clusters[cluster_id].append((word_index, word_index))
|
768 |
+
else:
|
769 |
+
# The span is starting, so we record the index of the word.
|
770 |
+
cluster_id = int(segment[1:])
|
771 |
+
coref_stacks[cluster_id].append(word_index)
|
772 |
+
else:
|
773 |
+
# The span for this id is ending, but didn't start at this word.
|
774 |
+
# Retrieve the start index from the document state and
|
775 |
+
# add the span to the clusters for this id.
|
776 |
+
cluster_id = int(segment[:-1])
|
777 |
+
start = coref_stacks[cluster_id].pop()
|
778 |
+
clusters[cluster_id].append((start, word_index))
|
779 |
+
|
780 |
+
@staticmethod
|
781 |
+
def _process_span_annotations_for_word(
|
782 |
+
annotations: List[str],
|
783 |
+
span_labels: List[List[str]],
|
784 |
+
current_span_labels: List[Optional[str]],
|
785 |
+
) -> None:
|
786 |
+
"""
|
787 |
+
Given a sequence of different label types for a single word and the current
|
788 |
+
span label we are inside, compute the BIO tag for each label and append to a list.
|
789 |
+
# Parameters
|
790 |
+
annotations : `List[str]`
|
791 |
+
A list of labels to compute BIO tags for.
|
792 |
+
span_labels : `List[List[str]]`
|
793 |
+
A list of lists, one for each annotation, to incrementally collect
|
794 |
+
the BIO tags for a sequence.
|
795 |
+
current_span_labels : `List[Optional[str]]`
|
796 |
+
The currently open span per annotation type, or `None` if there is no open span.
|
797 |
+
"""
|
798 |
+
for annotation_index, annotation in enumerate(annotations):
|
799 |
+
# strip all bracketing information to
|
800 |
+
# get the actual propbank label.
|
801 |
+
label = annotation.strip("()*")
|
802 |
+
|
803 |
+
if "(" in annotation:
|
804 |
+
# Entering into a span for a particular semantic role label.
|
805 |
+
# We append the label and set the current span for this annotation.
|
806 |
+
bio_label = "B-" + label
|
807 |
+
span_labels[annotation_index].append(bio_label)
|
808 |
+
current_span_labels[annotation_index] = label
|
809 |
+
elif current_span_labels[annotation_index] is not None:
|
810 |
+
# If there's no '(' token, but the current_span_label is not None,
|
811 |
+
# then we are inside a span.
|
812 |
+
bio_label = "I-" + current_span_labels[annotation_index]
|
813 |
+
span_labels[annotation_index].append(bio_label)
|
814 |
+
else:
|
815 |
+
# We're outside a span.
|
816 |
+
span_labels[annotation_index].append("O")
|
817 |
+
# Exiting a span, so we reset the current span label for this annotation.
|
818 |
+
if ")" in annotation:
|
819 |
+
current_span_labels[annotation_index] = None
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"english_v4": {"description": "OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,\nmultilingual corpus manually annotated with syntactic, semantic and discourse information.\n\nThis dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.\nIt includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).\n\nThe source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.\n\nSee also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)\n\nFor more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. \n", "citation": "@inproceedings{pradhan-etal-2013-towards,\n title = \"Towards Robust Linguistic Analysis using {O}nto{N}otes\",\n author = {Pradhan, Sameer and\n Moschitti, Alessandro and\n Xue, Nianwen and\n Ng, Hwee Tou and\n Bj{\"o}rkelund, Anders and\n Uryupina, Olga and\n Zhang, Yuchen and\n Zhong, Zhi},\n booktitle = \"Proceedings of the Seventeenth Conference on Computational Natural Language Learning\",\n month = aug,\n year = \"2013\",\n address = \"Sofia, Bulgaria\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W13-3516\",\n pages = \"143--152\",\n}\n\nRalph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston. OntoNotes Release 5.0 LDC2013T19. Web Download. Philadelphia: Linguistic Data Consortium, 2013.\n", "homepage": "https://conll.cemantix.org/2012/introduction.html", "license": "", "features": {"document_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentences": [{"part_id": {"dtype": "int32", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"num_classes": 49, "names": ["XX", "``", "$", "''", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "parse_tree": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_lemmas": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "predicate_framenet_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "word_senses": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "named_entities": {"feature": {"num_classes": 37, "names": ["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "srl_frames": [{"verb": {"dtype": "string", "id": null, "_type": "Value"}, "frames": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "coref_spans": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 3, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "conll2012_ontonotesv5", "config_name": "english_v4", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}}, "download_checksums": {"https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip": {"num_bytes": 183323987, "checksum": null}}, "download_size": 183323987, "post_processing_size": null, "dataset_size": 0, "size_in_bytes": 183323987}, "chinese_v4": {"description": "OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,\nmultilingual corpus manually annotated with syntactic, semantic and discourse information.\n\nThis dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.\nIt includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).\n\nThe source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.\n\nSee also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)\n\nFor more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. \n", "citation": "@inproceedings{pradhan-etal-2013-towards,\n title = \"Towards Robust Linguistic Analysis using {O}nto{N}otes\",\n author = {Pradhan, Sameer and\n Moschitti, Alessandro and\n Xue, Nianwen and\n Ng, Hwee Tou and\n Bj{\"o}rkelund, Anders and\n Uryupina, Olga and\n Zhang, Yuchen and\n Zhong, Zhi},\n booktitle = \"Proceedings of the Seventeenth Conference on Computational Natural Language Learning\",\n month = aug,\n year = \"2013\",\n address = \"Sofia, Bulgaria\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W13-3516\",\n pages = \"143--152\",\n}\n\nRalph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston. OntoNotes Release 5.0 LDC2013T19. Web Download. Philadelphia: Linguistic Data Consortium, 2013.\n", "homepage": "https://conll.cemantix.org/2012/introduction.html", "license": "", "features": {"document_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentences": [{"part_id": {"dtype": "int32", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"num_classes": 36, "names": ["X", "AD", "AS", "BA", "CC", "CD", "CS", "DEC", "DEG", "DER", "DEV", "DT", "ETC", "FW", "IJ", "INF", "JJ", "LB", "LC", "M", "MSP", "NN", "NR", "NT", "OD", "ON", "P", "PN", "PU", "SB", "SP", "URL", "VA", "VC", "VE", "VV"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "parse_tree": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_lemmas": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "predicate_framenet_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "word_senses": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "named_entities": {"feature": {"num_classes": 37, "names": ["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "srl_frames": [{"verb": {"dtype": "string", "id": null, "_type": "Value"}, "frames": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "coref_spans": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 3, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "conll2012_ontonotesv5", "config_name": "chinese_v4", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}}, "download_checksums": {"https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip": {"num_bytes": 183323987, "checksum": null}}, "download_size": 183323987, "post_processing_size": null, "dataset_size": 0, "size_in_bytes": 183323987}, "arabic_v4": {"description": "OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,\nmultilingual corpus manually annotated with syntactic, semantic and discourse information.\n\nThis dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.\nIt includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).\n\nThe source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.\n\nSee also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)\n\nFor more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. \n", "citation": "@inproceedings{pradhan-etal-2013-towards,\n title = \"Towards Robust Linguistic Analysis using {O}nto{N}otes\",\n author = {Pradhan, Sameer and\n Moschitti, Alessandro and\n Xue, Nianwen and\n Ng, Hwee Tou and\n Bj{\"o}rkelund, Anders and\n Uryupina, Olga and\n Zhang, Yuchen and\n Zhong, Zhi},\n booktitle = \"Proceedings of the Seventeenth Conference on Computational Natural Language Learning\",\n month = aug,\n year = \"2013\",\n address = \"Sofia, Bulgaria\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W13-3516\",\n pages = \"143--152\",\n}\n\nRalph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston. OntoNotes Release 5.0 LDC2013T19. Web Download. Philadelphia: Linguistic Data Consortium, 2013.\n", "homepage": "https://conll.cemantix.org/2012/introduction.html", "license": "", "features": {"document_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentences": [{"part_id": {"dtype": "int32", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "parse_tree": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_lemmas": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "predicate_framenet_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "word_senses": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "named_entities": {"feature": {"num_classes": 37, "names": ["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "srl_frames": [{"verb": {"dtype": "string", "id": null, "_type": "Value"}, "frames": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "coref_spans": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 3, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "conll2012_ontonotesv5", "config_name": "arabic_v4", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "conll2012_ontonotesv5"}}, "download_checksums": {"https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip": {"num_bytes": 183323987, "checksum": null}}, "download_size": 183323987, "post_processing_size": null, "dataset_size": 0, "size_in_bytes": 183323987}, "english_v12": {"description": "OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,\nmultilingual corpus manually annotated with syntactic, semantic and discourse information.\n\nThis dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.\nIt includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).\n\nThe source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.\n\nSee also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)\n\nFor more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. \n", "citation": "@inproceedings{pradhan-etal-2013-towards,\n title = \"Towards Robust Linguistic Analysis using {O}nto{N}otes\",\n author = {Pradhan, Sameer and\n Moschitti, Alessandro and\n Xue, Nianwen and\n Ng, Hwee Tou and\n Bj{\"o}rkelund, Anders and\n Uryupina, Olga and\n Zhang, Yuchen and\n Zhong, Zhi},\n booktitle = \"Proceedings of the Seventeenth Conference on Computational Natural Language Learning\",\n month = aug,\n year = \"2013\",\n address = \"Sofia, Bulgaria\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W13-3516\",\n pages = \"143--152\",\n}\n\nRalph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston. OntoNotes Release 5.0 LDC2013T19. Web Download. Philadelphia: Linguistic Data Consortium, 2013.\n", "homepage": "https://conll.cemantix.org/2012/introduction.html", "license": "", "features": {"document_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentences": [{"part_id": {"dtype": "int32", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"num_classes": 51, "names": ["XX", "``", "$", "''", "*", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "VERB", "WDT", "WP", "WP$", "WRB"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "parse_tree": {"dtype": "string", "id": null, "_type": "Value"}, "predicate_lemmas": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "predicate_framenet_ids": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "word_senses": {"feature": {"dtype": "float32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "named_entities": {"feature": {"num_classes": 37, "names": ["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "srl_frames": [{"verb": {"dtype": "string", "id": null, "_type": "Value"}, "frames": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "coref_spans": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": 3, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "conll2012_ontonotesv5", "config_name": "english_v12", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 171692045, "num_examples": 8106, "dataset_name": "conll2012_ontonotesv5"}, "validation": {"name": "validation", "num_bytes": 24264804, "num_examples": 1370, "dataset_name": "conll2012_ontonotesv5"}, "test": {"name": "test", "num_bytes": 18254144, "num_examples": 1200, "dataset_name": "conll2012_ontonotesv5"}}, "download_checksums": {"https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/zmycy7t9h9-1.zip": {"num_bytes": 183323987, "checksum": null}}, "download_size": 183323987, "post_processing_size": null, "dataset_size": 214210993, "size_in_bytes": 397534980}}
|
dummy/arabic_v4/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81686610f9c3cffc29e820a825b2f2ab85b7cdc86a3ca58842afecad2a3b5dc7
|
3 |
+
size 37013
|
dummy/chinese_v4/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a04ae3d0a91e1912b7efdc81364f0cf7de2bad9fdda396073159dcec1332b68
|
3 |
+
size 11936
|
dummy/english_v12/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df4240b490d6aa9a0c0d957b8c835981ab68b42a880a66154b40c662a30279fb
|
3 |
+
size 11863
|
dummy/english_v4/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fea4942d9a20a28668f2f09098273b1009d6ac958d7ca286504a8e91c764132
|
3 |
+
size 12823
|