Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- lib/python3.10/site-packages/babel/locale-data/da.dat +3 -0
- lib/python3.10/site-packages/babel/locale-data/de.dat +3 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_forward_cpu_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_coalesce_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_sparse_mm_search_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h +113 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_empty_per_channel_affine_quantized_ops.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_addcdiv_cuda_dispatch.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_min_native.h +35 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erfc_cuda_dispatch.h +24 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_compositeexplicitautograd_dispatch.h +24 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_native.h +22 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward_native.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_backward_data.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_semi_structured_addmm.h +30 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_unique_native.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_cuda_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/addr.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/amin_cuda_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/atan.h +44 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_elemt.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_native.h +24 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/bmm.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_tensors_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/ccol_indices_copy_compositeexplicitautograd_dispatch.h +24 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/channel_shuffle.h +91 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta.h +32 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/complex_native.h +22 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfftn_compositeimplicitautograd_dispatch.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/flipud_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/frobenius_norm.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/glu_meta_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd_compositeimplicitautograd_dispatch.h +25 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/imag_compositeimplicitautograd_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_native.h +21 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cholesky.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/linalg_diagonal_compositeimplicitautograd_dispatch.h +23 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_native.h +22 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_ex.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/log2_cuda_dispatch.h +26 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/mH_ops.h +28 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_max_pool3d.h +39 -0
- lib/python3.10/site-packages/torch/include/ATen/ops/narrow_compositeimplicitautograd_dispatch.h +26 -0
.gitattributes
CHANGED
@@ -179,3 +179,5 @@ lib/python3.10/site-packages/babel/locale-data/lt.dat filter=lfs diff=lfs merge=
|
|
179 |
lib/python3.10/site-packages/babel/locale-data/lb.dat filter=lfs diff=lfs merge=lfs -text
|
180 |
lib/python3.10/site-packages/babel/locale-data/am.dat filter=lfs diff=lfs merge=lfs -text
|
181 |
lib/python3.10/site-packages/babel/locale-data/yue_Hans.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
179 |
lib/python3.10/site-packages/babel/locale-data/lb.dat filter=lfs diff=lfs merge=lfs -text
|
180 |
lib/python3.10/site-packages/babel/locale-data/am.dat filter=lfs diff=lfs merge=lfs -text
|
181 |
lib/python3.10/site-packages/babel/locale-data/yue_Hans.dat filter=lfs diff=lfs merge=lfs -text
|
182 |
+
lib/python3.10/site-packages/babel/locale-data/da.dat filter=lfs diff=lfs merge=lfs -text
|
183 |
+
lib/python3.10/site-packages/babel/locale-data/de.dat filter=lfs diff=lfs merge=lfs -text
|
lib/python3.10/site-packages/babel/locale-data/da.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5545713658e2b9bbe3ddefcf86299e30b05566502dd464f66c07e7c98bbaef51
|
3 |
+
size 171756
|
lib/python3.10/site-packages/babel/locale-data/de.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97a001560db35cf5fd5acf60dbe59ebded394b8ea28b48676ee095892ea6b660
|
3 |
+
size 178630
|
lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_forward_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _cdist_forward(const at::Tensor & x1, const at::Tensor & x2, double p, ::std::optional<int64_t> compute_mode);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_coalesce_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _coalesce {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::_coalesce";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "_coalesce(Tensor self) -> Tensor";
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _coalesce_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
static constexpr const char* name = "aten::_coalesce";
|
33 |
+
static constexpr const char* overload_name = "out";
|
34 |
+
static constexpr const char* schema_str = "_coalesce.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)";
|
35 |
+
static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_csr_to_coo_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _convert_indices_from_csr_to_coo(const at::Tensor & crow_indices, const at::Tensor & col_indices, bool out_int32=false, bool transpose=false);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_cslt_sparse_mm_search_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _cslt_sparse_mm_search {
|
18 |
+
using schema = int64_t (const at::Tensor &, const at::Tensor &, const ::std::optional<at::Tensor> &, const ::std::optional<at::Tensor> &, ::std::optional<at::ScalarType>, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::_cslt_sparse_mm_search";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "_cslt_sparse_mm_search(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False) -> int";
|
24 |
+
static int64_t call(const at::Tensor & compressed_A, const at::Tensor & dense_B, const ::std::optional<at::Tensor> & bias, const ::std::optional<at::Tensor> & alpha, ::std::optional<at::ScalarType> out_dtype, bool transpose_result);
|
25 |
+
static int64_t redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & compressed_A, const at::Tensor & dense_B, const ::std::optional<at::Tensor> & bias, const ::std::optional<at::Tensor> & alpha, ::std::optional<at::ScalarType> out_dtype, bool transpose_result);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options={});
|
21 |
+
TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory);
|
22 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options={});
|
23 |
+
TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory);
|
24 |
+
|
25 |
+
} // namespace meta
|
26 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized.h
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_empty_affine_quantized_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
26 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
27 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
31 |
+
at::Tensor _empty_affine_quantized(at::IntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
32 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
37 |
+
inline at::Tensor _empty_affine_quantized(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format) {
|
38 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
42 |
+
at::Tensor _empty_affine_quantized(at::IntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format) {
|
43 |
+
return at::_ops::_empty_affine_quantized::call(c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
48 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
49 |
+
return at::_ops::_empty_affine_quantized::call(size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
53 |
+
at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, at::TensorOptions options={}, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
54 |
+
return at::_ops::_empty_affine_quantized::call(size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt(), scale, zero_point, c10::impl::check_tensor_options_and_extract_memory_format(options, memory_format));
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor
|
59 |
+
inline at::Tensor _empty_affine_quantized_symint(c10::SymIntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format) {
|
60 |
+
return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
64 |
+
at::Tensor _empty_affine_quantized(c10::SymIntArrayRef size, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format) {
|
65 |
+
return at::_ops::_empty_affine_quantized::call(size, dtype, layout, device, pin_memory, scale, zero_point, memory_format);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
71 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
75 |
+
at::Tensor & _empty_affine_quantized_out(at::Tensor & out, at::IntArrayRef size, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
76 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
82 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
86 |
+
at::Tensor & _empty_affine_quantized_outf(at::IntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
87 |
+
return at::_ops::_empty_affine_quantized_out::call(c10::fromIntArrayRefSlow(size), scale, zero_point, memory_format, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
92 |
+
inline at::Tensor & _empty_affine_quantized_symint_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
93 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
94 |
+
}
|
95 |
+
namespace symint {
|
96 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
97 |
+
at::Tensor & _empty_affine_quantized_out(at::Tensor & out, c10::SymIntArrayRef size, double scale=1, int64_t zero_point=0, ::std::optional<at::MemoryFormat> memory_format=c10::MemoryFormat::Contiguous) {
|
98 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
// aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)
|
103 |
+
inline at::Tensor & _empty_affine_quantized_symint_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
104 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
105 |
+
}
|
106 |
+
namespace symint {
|
107 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
108 |
+
at::Tensor & _empty_affine_quantized_outf(c10::SymIntArrayRef size, double scale, int64_t zero_point, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out) {
|
109 |
+
return at::_ops::_empty_affine_quantized_out::call(size, scale, zero_point, memory_format, out);
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/_empty_per_channel_affine_quantized_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _empty_per_channel_affine_quantized {
|
18 |
+
using schema = at::Tensor (c10::SymIntArrayRef, const at::Tensor &, const at::Tensor &, int64_t, ::std::optional<at::ScalarType>, ::std::optional<at::Layout>, ::std::optional<at::Device>, ::std::optional<bool>, ::std::optional<at::MemoryFormat>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::_empty_per_channel_affine_quantized";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "_empty_per_channel_affine_quantized(SymInt[] size, *, Tensor scales, Tensor zero_points, int axis, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=contiguous_format) -> Tensor";
|
24 |
+
static at::Tensor call(c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, ::std::optional<at::MemoryFormat> memory_format);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, ::std::optional<at::ScalarType> dtype, ::std::optional<at::Layout> layout, ::std::optional<at::Device> device, ::std::optional<bool> pin_memory, ::std::optional<at::MemoryFormat> memory_format);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _empty_per_channel_affine_quantized_out {
|
29 |
+
using schema = at::Tensor & (c10::SymIntArrayRef, const at::Tensor &, const at::Tensor &, int64_t, ::std::optional<at::MemoryFormat>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
static constexpr const char* name = "aten::_empty_per_channel_affine_quantized";
|
33 |
+
static constexpr const char* overload_name = "out";
|
34 |
+
static constexpr const char* schema_str = "_empty_per_channel_affine_quantized.out(SymInt[] size, *, Tensor scales, Tensor zero_points, int axis, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)";
|
35 |
+
static at::Tensor & call(c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, const at::Tensor & scales, const at::Tensor & zero_points, int64_t axis, ::std::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _fake_quantize_learnable_per_channel_affine_backward {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, int64_t, double);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::_fake_quantize_learnable_per_channel_affine_backward";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "_fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor)";
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_addcdiv_cuda_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_addcdiv(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, const at::Scalar & value=1);
|
21 |
+
TORCH_API void _foreach_addcdiv_(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, const at::Scalar & value=1);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_addcdiv(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, at::ArrayRef<at::Scalar> scalars);
|
23 |
+
TORCH_API void _foreach_addcdiv_(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, at::ArrayRef<at::Scalar> scalars);
|
24 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_addcdiv(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, const at::Tensor & scalars);
|
25 |
+
TORCH_API void _foreach_addcdiv_(at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, const at::Tensor & scalars);
|
26 |
+
|
27 |
+
} // namespace cuda
|
28 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_min_native.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_scalar_kernel_slow(at::TensorList self, const at::Scalar & scalar);
|
20 |
+
TORCH_API void _foreach_clamp_min_Scalar_out(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
|
21 |
+
TORCH_API void foreach_tensor_clamp_min_scalar_kernel_slow_(at::TensorList self, const at::Scalar & scalar);
|
22 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_scalar_kernel_cuda(at::TensorList self, const at::Scalar & scalar);
|
23 |
+
TORCH_API void foreach_tensor_clamp_min_scalar_kernel_cuda_(at::TensorList self, const at::Scalar & scalar);
|
24 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_list_kernel_slow(at::TensorList self, at::TensorList other);
|
25 |
+
TORCH_API void _foreach_clamp_min_List_out(at::TensorList self, at::TensorList other, at::TensorList out);
|
26 |
+
TORCH_API void foreach_tensor_clamp_min_list_kernel_slow_(at::TensorList self, at::TensorList other);
|
27 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_list_kernel_cuda(at::TensorList self, at::TensorList other);
|
28 |
+
TORCH_API void foreach_tensor_clamp_min_list_kernel_cuda_(at::TensorList self, at::TensorList other);
|
29 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_scalarlist_kernel_slow(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
30 |
+
TORCH_API void _foreach_clamp_min_ScalarList_out(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
|
31 |
+
TORCH_API void foreach_tensor_clamp_min_scalarlist_kernel_slow_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
32 |
+
TORCH_API ::std::vector<at::Tensor> foreach_tensor_clamp_min_scalarlist_kernel_cuda(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
33 |
+
TORCH_API void foreach_tensor_clamp_min_scalarlist_kernel_cuda_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
|
34 |
+
} // namespace native
|
35 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_erfc_cuda_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_erfc(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_erfc_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cuda
|
24 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_masked_softmax_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & _masked_softmax_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mask, ::std::optional<int64_t> dim=::std::nullopt, ::std::optional<int64_t> mask_type=::std::nullopt);
|
21 |
+
TORCH_API at::Tensor & _masked_softmax_outf(const at::Tensor & self, const at::Tensor & mask, ::std::optional<int64_t> dim, ::std::optional<int64_t> mask_type, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_nnpack_spatial_convolution_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _nnpack_spatial_convolution(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, at::IntArrayRef padding, at::IntArrayRef stride=1);
|
20 |
+
TORCH_API at::Tensor & _nnpack_spatial_convolution_out_symint(const at::Tensor & input, const at::Tensor & weight, const ::std::optional<at::Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_slow_conv2d_backward_native.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> slow_conv2d_backward_out_cpu(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> slow_conv2d_backward_out_cuda(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & grad_input, at::Tensor & grad_weight, at::Tensor & grad_bias);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _slow_conv2d_backward_output_mask_out_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> slow_conv2d_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask);
|
23 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> slow_conv2d_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, ::std::array<bool,3> output_mask);
|
24 |
+
} // namespace native
|
25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_softmax_backward_data.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_softmax_backward_data_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor
|
26 |
+
inline at::Tensor _softmax_backward_data(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype) {
|
27 |
+
return at::_ops::_softmax_backward_data::call(grad_output, output, dim, input_dtype);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) grad_input) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _softmax_backward_data_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype) {
|
32 |
+
return at::_ops::_softmax_backward_data_out::call(grad_output, output, dim, input_dtype, grad_input);
|
33 |
+
}
|
34 |
+
// aten::_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) grad_input) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _softmax_backward_data_outf(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype, at::Tensor & grad_input) {
|
36 |
+
return at::_ops::_softmax_backward_data_out::call(grad_output, output, dim, input_dtype, grad_input);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_semi_structured_addmm.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_sparse_semi_structured_addmm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_sparse_semi_structured_addmm(Tensor input, Tensor mat1, Tensor mat1_meta, Tensor mat2, *, Scalar alpha=1, Scalar beta=1, ScalarType? out_dtype=None) -> Tensor
|
26 |
+
inline at::Tensor _sparse_semi_structured_addmm(const at::Tensor & input, const at::Tensor & mat1, const at::Tensor & mat1_meta, const at::Tensor & mat2, const at::Scalar & alpha=1, const at::Scalar & beta=1, ::std::optional<at::ScalarType> out_dtype=::std::nullopt) {
|
27 |
+
return at::_ops::_sparse_semi_structured_addmm::call(input, mat1, mat1_meta, mat2, alpha, beta, out_dtype);
|
28 |
+
}
|
29 |
+
|
30 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/_unique_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _unique_out(const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _unique_cpu(const at::Tensor & self, bool sorted=true, bool return_inverse=false);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _unique_cuda(const at::Tensor & self, bool sorted=true, bool return_inverse=false);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_meta_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h=::std::nullopt, ::std::optional<double> scales_w=::std::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h=::std::nullopt, ::std::optional<double> scales_w=::std::nullopt);
|
22 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h=::std::nullopt, ::std::optional<double> scales_w=::std::nullopt);
|
23 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h, ::std::optional<double> scales_w, at::Tensor & out);
|
24 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h=::std::nullopt, ::std::optional<double> scales_w=::std::nullopt);
|
25 |
+
TORCH_API at::Tensor & _upsample_bicubic2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, ::std::optional<double> scales_h, ::std::optional<double> scales_w, at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace meta
|
28 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor adaptive_max_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautogradnonfunctional
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_backward_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor adaptive_max_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
|
21 |
+
TORCH_API at::Tensor & adaptive_max_pool2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices);
|
22 |
+
TORCH_API at::Tensor & adaptive_max_pool2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, at::Tensor & grad_input);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/addr.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/addr_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
|
26 |
+
inline at::Tensor addr(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta=1, const at::Scalar & alpha=1) {
|
27 |
+
return at::_ops::addr::call(self, vec1, vec2, beta, alpha);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & addr_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta=1, const at::Scalar & alpha=1) {
|
32 |
+
return at::_ops::addr_out::call(self, vec1, vec2, beta, alpha, out);
|
33 |
+
}
|
34 |
+
// aten::addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & addr_outf(const at::Tensor & self, const at::Tensor & vec1, const at::Tensor & vec2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out) {
|
36 |
+
return at::_ops::addr_out::call(self, vec1, vec2, beta, alpha, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/amin_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor amin(const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
|
21 |
+
TORCH_API at::Tensor & amin_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
|
22 |
+
TORCH_API at::Tensor & amin_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/atan.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/atan_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::atan(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor atan(const at::Tensor & self) {
|
27 |
+
return at::_ops::atan::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::atan_(Tensor(a!) self) -> Tensor(a!)
|
31 |
+
inline at::Tensor & atan_(at::Tensor & self) {
|
32 |
+
return at::_ops::atan_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & atan_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::atan_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & atan_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::atan_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_elemt.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/batch_norm_elemt_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> Tensor
|
26 |
+
inline at::Tensor batch_norm_elemt(const at::Tensor & input, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps) {
|
27 |
+
return at::_ops::batch_norm_elemt::call(input, weight, bias, mean, invstd, eps);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & batch_norm_elemt_out(at::Tensor & out, const at::Tensor & input, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps) {
|
32 |
+
return at::_ops::batch_norm_elemt_out::call(input, weight, bias, mean, invstd, eps, out);
|
33 |
+
}
|
34 |
+
// aten::batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & batch_norm_elemt_outf(const at::Tensor & input, const ::std::optional<at::Tensor> & weight, const ::std::optional<at::Tensor> & bias, const at::Tensor & mean, const at::Tensor & invstd, double eps, at::Tensor & out) {
|
36 |
+
return at::_ops::batch_norm_elemt_out::call(input, weight, bias, mean, invstd, eps, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/blackman_window_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, ::std::optional<at::ScalarType> dtype={}, ::std::optional<at::Layout> layout={}, ::std::optional<at::Device> device={}, ::std::optional<bool> pin_memory={});
|
20 |
+
TORCH_API at::Tensor & blackman_window_out(int64_t window_length, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor blackman_window(int64_t window_length, bool periodic, ::std::optional<at::ScalarType> dtype={}, ::std::optional<at::Layout> layout={}, ::std::optional<at::Device> device={}, ::std::optional<bool> pin_memory={});
|
22 |
+
TORCH_API at::Tensor & blackman_window_periodic_out(int64_t window_length, bool periodic, at::Tensor & out);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/bmm.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/bmm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::bmm(Tensor self, Tensor mat2) -> Tensor
|
26 |
+
inline at::Tensor bmm(const at::Tensor & self, const at::Tensor & mat2) {
|
27 |
+
return at::_ops::bmm::call(self, mat2);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & bmm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat2) {
|
32 |
+
return at::_ops::bmm_out::call(self, mat2, out);
|
33 |
+
}
|
34 |
+
// aten::bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & bmm_outf(const at::Tensor & self, const at::Tensor & mat2, at::Tensor & out) {
|
36 |
+
return at::_ops::bmm_out::call(self, mat2, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/broadcast_tensors_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API broadcast_tensors {
|
18 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::broadcast_tensors";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "broadcast_tensors(Tensor[] tensors) -> Tensor[]";
|
24 |
+
static ::std::vector<at::Tensor> call(at::TensorList tensors);
|
25 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/ccol_indices_copy_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor & ccol_indices_copy_out(at::Tensor & out, const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & ccol_indices_copy_outf(const at::Tensor & self, at::Tensor & out);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautograd
|
24 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/channel_shuffle.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/channel_shuffle_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::channel_shuffle(Tensor self, SymInt groups) -> Tensor
|
26 |
+
inline at::Tensor channel_shuffle(const at::Tensor & self, int64_t groups) {
|
27 |
+
return at::_ops::channel_shuffle::call(self, groups);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
31 |
+
at::Tensor channel_shuffle(const at::Tensor & self, int64_t groups) {
|
32 |
+
return at::_ops::channel_shuffle::call(self, groups);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::channel_shuffle(Tensor self, SymInt groups) -> Tensor
|
37 |
+
inline at::Tensor channel_shuffle_symint(const at::Tensor & self, c10::SymInt groups) {
|
38 |
+
return at::_ops::channel_shuffle::call(self, groups);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
42 |
+
at::Tensor channel_shuffle(const at::Tensor & self, c10::SymInt groups) {
|
43 |
+
return at::_ops::channel_shuffle::call(self, groups);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::channel_shuffle.out(Tensor self, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & channel_shuffle_out(at::Tensor & out, const at::Tensor & self, int64_t groups) {
|
49 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
53 |
+
at::Tensor & channel_shuffle_out(at::Tensor & out, const at::Tensor & self, int64_t groups) {
|
54 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::channel_shuffle.out(Tensor self, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & channel_shuffle_outf(const at::Tensor & self, int64_t groups, at::Tensor & out) {
|
60 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, int64_t>>>
|
64 |
+
at::Tensor & channel_shuffle_outf(const at::Tensor & self, int64_t groups, at::Tensor & out) {
|
65 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::channel_shuffle.out(Tensor self, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & channel_shuffle_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymInt groups) {
|
71 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
75 |
+
at::Tensor & channel_shuffle_out(at::Tensor & out, const at::Tensor & self, c10::SymInt groups) {
|
76 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::channel_shuffle.out(Tensor self, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & channel_shuffle_symint_outf(const at::Tensor & self, c10::SymInt groups, at::Tensor & out) {
|
82 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same_v<T, c10::SymInt>>>
|
86 |
+
at::Tensor & channel_shuffle_outf(const at::Tensor & self, c10::SymInt groups, at::Tensor & out) {
|
87 |
+
return at::_ops::channel_shuffle_out::call(self, groups, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/clamp_meta.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_clamp : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, at::OptionalScalarRef min, at::OptionalScalarRef max);
|
24 |
+
};
|
25 |
+
struct TORCH_API structured_clamp_Tensor : public TensorIteratorBase {
|
26 |
+
|
27 |
+
|
28 |
+
void meta(const at::Tensor & self, at::OptionalTensorRef min, at::OptionalTensorRef max);
|
29 |
+
};
|
30 |
+
|
31 |
+
} // namespace native
|
32 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/complex_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor complex(const at::Tensor & real, const at::Tensor & imag);
|
20 |
+
TORCH_API at::Tensor & complex_out(const at::Tensor & real, const at::Tensor & imag, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfftn_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fft_hfftn(const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::OptionalIntArrayRef dim=::std::nullopt, ::std::optional<c10::string_view> norm=::std::nullopt);
|
21 |
+
TORCH_API at::Tensor fft_hfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::OptionalIntArrayRef dim=::std::nullopt, ::std::optional<c10::string_view> norm=::std::nullopt);
|
22 |
+
TORCH_API const at::Tensor & fft_hfftn_out(const at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=::std::nullopt, at::OptionalIntArrayRef dim=::std::nullopt, ::std::optional<c10::string_view> norm=::std::nullopt);
|
23 |
+
TORCH_API const at::Tensor & fft_hfftn_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::OptionalIntArrayRef dim, ::std::optional<c10::string_view> norm, const at::Tensor & out);
|
24 |
+
TORCH_API const at::Tensor & fft_hfftn_symint_out(const at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=::std::nullopt, at::OptionalIntArrayRef dim=::std::nullopt, ::std::optional<c10::string_view> norm=::std::nullopt);
|
25 |
+
TORCH_API const at::Tensor & fft_hfftn_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, ::std::optional<c10::string_view> norm, const at::Tensor & out);
|
26 |
+
|
27 |
+
} // namespace compositeimplicitautograd
|
28 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/flipud_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API flipud {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::flipud";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "flipud(Tensor self) -> Tensor";
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/frobenius_norm.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/frobenius_norm_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor
|
26 |
+
inline at::Tensor frobenius_norm(const at::Tensor & self, at::IntArrayRef dim, bool keepdim=false) {
|
27 |
+
return at::_ops::frobenius_norm_dim::call(self, dim, keepdim);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & frobenius_norm_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, bool keepdim=false) {
|
32 |
+
return at::_ops::frobenius_norm_out::call(self, dim, keepdim, out);
|
33 |
+
}
|
34 |
+
// aten::frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & frobenius_norm_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, at::Tensor & out) {
|
36 |
+
return at::_ops::frobenius_norm_out::call(self, dim, keepdim, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/glu_meta_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor glu(const at::Tensor & self, int64_t dim=-1);
|
21 |
+
TORCH_API at::Tensor & glu_out(at::Tensor & out, const at::Tensor & self, int64_t dim=-1);
|
22 |
+
TORCH_API at::Tensor & glu_outf(const at::Tensor & self, int64_t dim, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace meta
|
25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/grid_sampler_3d_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> grid_sampler_3d_backward(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask) {
|
27 |
+
return at::_ops::grid_sampler_3d_backward::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::grid_sampler_3d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_3d_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask) {
|
32 |
+
return at::_ops::grid_sampler_3d_backward_out::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, out0, out1);
|
33 |
+
}
|
34 |
+
// aten::grid_sampler_3d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, at::Tensor & out0, at::Tensor & out1) {
|
36 |
+
return at::_ops::grid_sampler_3d_backward_out::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, out0, out1);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/histogramdd_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::IntArrayRef bins, ::std::optional<at::ArrayRef<double>> range=::std::nullopt, const ::std::optional<at::Tensor> & weight={}, bool density=false);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, int64_t bins, ::std::optional<at::ArrayRef<double>> range=::std::nullopt, const ::std::optional<at::Tensor> & weight={}, bool density=false);
|
22 |
+
TORCH_API ::std::tuple<at::Tensor,::std::vector<at::Tensor>> histogramdd(const at::Tensor & self, at::TensorList bins, ::std::optional<at::ArrayRef<double>> range=::std::nullopt, const ::std::optional<at::Tensor> & weight={}, bool density=false);
|
23 |
+
|
24 |
+
} // namespace compositeimplicitautograd
|
25 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/imag_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor imag(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/is_leaf_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API bool is_leaf(const at::Tensor & self);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/linalg_cholesky.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linalg_cholesky_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linalg_cholesky(Tensor self, *, bool upper=False) -> Tensor
|
26 |
+
inline at::Tensor linalg_cholesky(const at::Tensor & self, bool upper=false) {
|
27 |
+
return at::_ops::linalg_cholesky::call(self, upper);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::linalg_cholesky.out(Tensor self, *, bool upper=False, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & linalg_cholesky_out(at::Tensor & out, const at::Tensor & self, bool upper=false) {
|
32 |
+
return at::_ops::linalg_cholesky_out::call(self, upper, out);
|
33 |
+
}
|
34 |
+
// aten::linalg_cholesky.out(Tensor self, *, bool upper=False, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & linalg_cholesky_outf(const at::Tensor & self, bool upper, at::Tensor & out) {
|
36 |
+
return at::_ops::linalg_cholesky_out::call(self, upper, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/linalg_diagonal_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor linalg_diagonal(const at::Tensor & A, int64_t offset=0, int64_t dim1=-2, int64_t dim2=-1);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/linalg_ldl_factor_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <optional>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_ldl_factor(const at::Tensor & self, bool hermitian=false);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_ldl_factor_out(const at::Tensor & self, bool hermitian, at::Tensor & LD, at::Tensor & pivots);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/linalg_solve_ex.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/linalg_solve_ex_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor info)
|
26 |
+
inline ::std::tuple<at::Tensor,at::Tensor> linalg_solve_ex(const at::Tensor & A, const at::Tensor & B, bool left=true, bool check_errors=false) {
|
27 |
+
return at::_ops::linalg_solve_ex::call(A, B, left, check_errors);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::linalg_solve_ex.out(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) info) -> (Tensor(a!) result, Tensor(b!) info)
|
31 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_solve_ex_out(at::Tensor & result, at::Tensor & info, const at::Tensor & A, const at::Tensor & B, bool left=true, bool check_errors=false) {
|
32 |
+
return at::_ops::linalg_solve_ex_out::call(A, B, left, check_errors, result, info);
|
33 |
+
}
|
34 |
+
// aten::linalg_solve_ex.out(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) info) -> (Tensor(a!) result, Tensor(b!) info)
|
35 |
+
inline ::std::tuple<at::Tensor &,at::Tensor &> linalg_solve_ex_outf(const at::Tensor & A, const at::Tensor & B, bool left, bool check_errors, at::Tensor & result, at::Tensor & info) {
|
36 |
+
return at::_ops::linalg_solve_ex_out::call(A, B, left, check_errors, result, info);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/log2_cuda_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor log2(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & log2_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & log2_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
TORCH_API at::Tensor & log2_(at::Tensor & self);
|
24 |
+
|
25 |
+
} // namespace cuda
|
26 |
+
} // namespace at
|
lib/python3.10/site-packages/torch/include/ATen/ops/mH_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API mH {
|
18 |
+
using schema = at::Tensor (const at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
static constexpr const char* name = "aten::mH";
|
22 |
+
static constexpr const char* overload_name = "";
|
23 |
+
static constexpr const char* schema_str = "mH(Tensor(a) self) -> Tensor(a)";
|
24 |
+
static at::Tensor call(const at::Tensor & self);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_max_pool3d.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <optional>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/mkldnn_max_pool3d_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::mkldnn_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
26 |
+
inline at::Tensor mkldnn_max_pool3d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false) {
|
27 |
+
return at::_ops::mkldnn_max_pool3d::call(self, kernel_size, stride, padding, dilation, ceil_mode);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::mkldnn_max_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & mkldnn_max_pool3d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false) {
|
32 |
+
return at::_ops::mkldnn_max_pool3d_out::call(self, kernel_size, stride, padding, dilation, ceil_mode, out);
|
33 |
+
}
|
34 |
+
// aten::mkldnn_max_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & mkldnn_max_pool3d_outf(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode, at::Tensor & out) {
|
36 |
+
return at::_ops::mkldnn_max_pool3d_out::call(self, kernel_size, stride, padding, dilation, ceil_mode, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
lib/python3.10/site-packages/torch/include/ATen/ops/narrow_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor narrow(const at::Tensor & self, int64_t dim, int64_t start, int64_t length);
|
21 |
+
TORCH_API at::Tensor narrow_symint(const at::Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length);
|
22 |
+
TORCH_API at::Tensor narrow(const at::Tensor & self, int64_t dim, const at::Tensor & start, int64_t length);
|
23 |
+
TORCH_API at::Tensor narrow_symint(const at::Tensor & self, int64_t dim, const at::Tensor & start, c10::SymInt length);
|
24 |
+
|
25 |
+
} // namespace compositeimplicitautograd
|
26 |
+
} // namespace at
|