|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" VASR Loading Script """ |
|
|
|
import json |
|
import os |
|
import pandas as pd |
|
import datasets |
|
from huggingface_hub import hf_hub_url |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
VASR is a challenging dataset for evaluating computer vision commonsense reasoning abilities. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. Our experiments demonstrate that state-of-the-art models struggle with carefully chosen distractors (±53%, compared to 90% human accuracy). |
|
""" |
|
|
|
_HOMEPAGE = "https://vasr-dataset.github.io/" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_URL = "https://huggingface.co/datasets/nlphuji/vasr/blob/main" |
|
split2file = {'train': 'train_gold.csv', 'validation': 'dev_gold.csv', 'test': 'test_gold_unlabeled.csv'} |
|
|
|
class Vasr(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="test", version=VERSION, description="vasr gold test dataset (unlabeled)"), |
|
datasets.BuilderConfig(name="dev", version=VERSION, description="vasr gold dev dataset (labeled)"), |
|
datasets.BuilderConfig(name="train", version=VERSION, description="vasr gold train dataset (labeled)"), |
|
] |
|
KEYS_LABELED = ["A", "A'", "B", "B'", 'candidates', 'label', 'A_verb', "A'_verb", 'B_verb', "B'_verb", 'diff_item_A', 'diff_item_A_str_first', "diff_item_A'", "diff_item_A'_str_first", "A_str", "A'_str", "B_str", "B'_str"] |
|
KEYS_UNLABELED = ["A", "A'", "B", 'candidates_images', 'A_str', "A'_str", "B"] |
|
|
|
print("*** in Vasr class ***") |
|
|
|
def _info(self): |
|
print("*** in Vasr info ***") |
|
print(vars(self)) |
|
print(f"Curr config name: {self.config.name}") |
|
feats_dict = { |
|
"A": datasets.Image(), |
|
"A'": datasets.Image(), |
|
"B": datasets.Image(), |
|
"B'": datasets.Image(), |
|
"candidates_images": [datasets.Image()], |
|
"label": datasets.Value("int64"), |
|
"candidates": [datasets.Value("string")], |
|
"A_verb": datasets.Value("string"), |
|
"A'_verb": datasets.Value("string"), |
|
"B_verb": datasets.Value("string"), |
|
"B'_verb": datasets.Value("string"), |
|
"diff_item_A": datasets.Value("string"), |
|
"diff_item_A_str_first": datasets.Value("string"), |
|
"diff_item_A'": datasets.Value("string"), |
|
"diff_item_A'_str_first": datasets.Value("string"), |
|
"A_str": datasets.Value("string"), |
|
"A'_str": datasets.Value("string"), |
|
"B_str": datasets.Value("string"), |
|
"B'_str": datasets.Value("string"), |
|
} |
|
if self.config.name == 'test': |
|
print("Filtering feats dict") |
|
feats_dict = {k:v for k,v in feats_dict.items() if k in self.KEYS_UNLABELED} |
|
features = datasets.Features(feats_dict) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract({ |
|
"images_dir": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="vasr_images.zip") |
|
}) |
|
print(f"in split gen, config name: {self.config.name}") |
|
print(f"in split gen, config name: {split2file[self.config.name]}") |
|
examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename=split2file[self.config.name]) |
|
|
|
gen = datasets.SplitGenerator(name=self.config.name, gen_kwargs={**data_dir, **{'examples_csv': examples}}) |
|
|
|
return [gen] |
|
|
|
|
|
def _generate_examples(self, examples_csv, images_dir): |
|
|
|
|
|
df = pd.read_csv(examples_csv) |
|
|
|
has_label = 'D_img' in df.columns |
|
|
|
d_keys = self.KEYS_LABELED if has_label else self.KEYS_UNLABELED |
|
dataset = self.config.name |
|
print(f'Curr config: {dataset}') |
|
print(f'curr keys') |
|
print(self.info.features) |
|
print(type(self.info.features)) |
|
|
|
for r_idx, r in df.iterrows(): |
|
r_dict = r.to_dict() |
|
r_dict['candidates'] = json.loads(r_dict['candidates']) |
|
candidates_images = [os.path.join(images_dir, "vasr_images", x) for x in |
|
r_dict['candidates']] |
|
r_dict['candidates_images'] = candidates_images |
|
r_dict["A_str"] = r_dict['A_img'] |
|
r_dict["A'_str"] = r_dict['B_img'] |
|
r_dict["B_str"] = r_dict['C_img'] |
|
if has_label: |
|
r_dict["B'_str"] = r_dict['D_img'] |
|
imgs_list = ['A_img', 'B_img', 'C_img', 'D_img'] |
|
else: |
|
imgs_list = ['A_img', 'B_img', 'C_img'] |
|
for img in imgs_list: |
|
r_dict[img] = os.path.join(images_dir, "vasr_images", r_dict[img]) |
|
r_dict["A"] = r_dict['A_img'] |
|
r_dict["A'"] = r_dict['B_img'] |
|
r_dict["B"] = r_dict['C_img'] |
|
if has_label: |
|
r_dict["B'"] = r_dict['D_img'] |
|
r_dict["A'_verb"] = r_dict['B_verb'] |
|
r_dict["B_verb"] = r_dict['C_verb'] |
|
r_dict["B'_verb"] = r_dict['D_verb'] |
|
r_dict["diff_item_A'"] = r_dict['diff_item_B'] |
|
r_dict["diff_item_A'_str_first"] = r_dict['diff_item_B_str_first'] |
|
relevant_r_dict = {k:v for k,v in r_dict.items() if k in d_keys or k == 'candidates_images'} |
|
yield r_idx, relevant_r_dict |