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Abstract

Recent advances in DUSt3R have enabled robust estima-
tion of dense point clouds and camera parameters of static
scenes, leveraging Transformer network architectures and
direct supervision on large-scale 3D datasets. In contrast,
the limited scale and diversity of available 4D datasets
present a major bottleneck for training a highly general-
izable 4D model. This constraint has driven conventional
4D methods to fine-tune 3D models on scalable dynamic
video data with additional geometric priors such as opti-
cal flow and depths. In this work, we take an opposite path
and introduce Easi3R, a simple yet efficient training-free
method for 4D reconstruction. Our approach applies at-
tention adaptation during inference, eliminating the need
for from-scratch pre-training or network fine-tuning. We
find that the attention layers in DUSt3R inherently encode
rich information about camera and object motion. By care-
fully disentangling these attention maps, we achieve accu-
rate dynamic region segmentation, camera pose estimation,
and 4D dense point map reconstruction. Extensive exper-
iments on real-world dynamic videos demonstrate that our
lightweight attention adaptation significantly outperforms
previous state-of-the-art methods that are trained or fine-
tuned on extensive dynamic datasets.

1. Introduction
Recovering geometry and motions from dynamic im-
age collections is still a fundamental challenge in com-
puter vision, with broad downstream applications in novel
view synthesis, AR/VR, autonomous navigation, and
robotics. The literature commonly identifies this problem as
Structure-from-Motion (SfM) and has been the core focus
in 3D vision over decades, yielding mature algorithms that
perform well under stationary conditions and wide base-
lines. However, these algorithms often fail when applied
to dynamic video input.

The main reason for the accuracy and robustness gap be-
tween static and dynamic SfM is object dynamics, a com-

··· ···

Easi3R

4D Reconstruction

Object Motion

Video

Static Scene

··· ···

Camera
Motion

Frame

Frame

Frame
Frame

Frame

Figure 1. We present Easi3R, a training-free, plug-and-play ap-
proach that efficiently disentangles object and camera motion, en-
abling the adaptation of DUSt3R for 4D reconstruction.

mon component in real-world videos. Moving objects vi-
olate fundamental assumptions of homography and epipo-
lar consistency in traditional SfM methods [37, 48]. In ad-
dition, in dynamic videos, where camera and object mo-
tions are often entangled, these methods struggle to dis-
entangle the two motions, often causing the motion with
rich texture to mainly contribute to camera pose estima-
tion erroneously. Recent efforts, such as MonST3R [73]
and CUT3R [63], have made strides to address these chal-
lenges. However, their success is based on extensive train-
ing data [19, 25, 63, 68, 73] or task-specific prior mod-
els [22, 25, 73, 74], such as the depth, optical flow, and
object mask estimators. These limitations motivate us to
innovate further to minimize the gap between static and dy-
namic reconstruction.

We ask ourselves if there are lessons from human per-
ception that can be used as design principles for dynamic
4D reconstruction: Human beings are capable of perceiv-
ing body motion and the structure of the scene, identifying
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dynamic objects, and disentangling ego-motion from object
motion through the inherent attention mechanisms of the
brain [58]. Yet, the learning process rarely relies on explicit
dynamic labels.

We observe that DUSt3R implicitly learned a similar
mechanism, and based on this, we introduce Easi3R, a
training-free method to achieve dynamic object segmenta-
tion, dense point map reconstruction, and robust camera
pose estimation from dynamic videos, as shown in Figure 1.
DUSt3R uses attention layers at its core, taking two image
features as input and producing pixel-aligned point maps
as output. These attention layers are trained to directly
predict pointmaps in the reference view coordinate space,
implicitly matching the image features between the input
views [4] and estimating the rigid view transformation in
the feature space. In practice, performance drops signifi-
cantly when processing pairs with object dynamics [73], as
shown in Figure 2. By analyzing the attention maps in the
transformer layers, we find that regions with less texture,
under-observed, and dynamic objects can yield low atten-
tion values. Therefore, we propose a simple yet effective
decomposition strategy to isolate the above components,
which enables long-horizon dynamic object detection and
segmentation. With this segmentation, we perform a second
inference pass by applying a re-weighting [17] in the cross-
attention layers, enabling robust dynamic 4D reconstruction
and camera motion recovery without fine-tuning on a dy-
namic dataset, all at minimal additional cost to DUSt3R.

Despite its simplicity, we demonstrate that our inference-
time scaling approach for 4D reconstruction is remarkably
robust and accurate on in-the-wild casual dynamic videos.
We evaluate our Easi3R adaptation on the DUSt3R and
MonST3R backbones in three task categories: camera pose
estimation, dynamic object segmentation, and pointcloud
reconstruction in dynamic scenes. Easi3R performs sur-
prisingly well across a wide range of datasets, even surpass-
ing concurrent methods (e.g., CUT3R [63], MonST3R [73],
and DAS3R [68]) that are trained on dynamic datasets.

2. Related Work

SfM and SLAM. Structure-from-Motion (SfM) [2, 41, 42,
48, 51, 52] and Simultaneous Localization and Mapping
(SLAM) [9, 13, 32, 34] have long been the foundation for
3D structure and camera pose estimation. These methods
are done by associating 2D correspondences [5, 10, 28, 32,
47] or minimizing photometric errors [12, 13], followed
by bundle adjustment (BA) [3, 6, 55, 57, 59, 62] to re-
fine structure and motion estimates. Although highly effec-
tive with dense input, these approaches often struggle with
limited camera parallax or ill-posed conditions, leading to
performance degeneracy. To overcome these limitations,
DUSt3R [64] introduced a learning-based approach that di-

rectly predicts two pointmaps from an image pair in the co-
ordinate space of the first view. This approach inherently
matches image features and rigid body view transforma-
tion. By leveraging a Transformer-based architecture [11]
and direct point supervision on large-scale 3D datasets,
DUSt3R establishes a robust Multi-View Stereo (MVS)
foundation model. However, DUSt3R and the follow-up
methods [27, 33, 56, 61] assume primarily static scenes,
which can lead to significant performance degradation when
dealing with videos with dynamic objects.

Pose-free Dynamic Scene Reconstruction. Modifications
to SLAM for dynamic scenes involve robust pose estima-
tion to mitigate moving object interference, dynamic map
management for updating changing environments, includ-
ing techniques like semantic segmentation [72], optical
flows [75], enhance SLAM’s resilience in dynamic scenar-
ios. Another line of work focuses on estimating stable video
depth by incorporating geometric constraints [29] and gen-
erative priors [18, 49]. These methods enhance monocu-
lar depth accuracy but lack global point cloud lifting due
to missing camera intrinsics and poses. For joint pose and
depth estimation, optimization-based methods such as Ca-
sualSAM [74] fine-tune a depth network [45] at test time
using pre-computed optical flow [66]. Robust-CVD [22] re-
fines pre-computed depth [45] and camera pose by leverag-
ing masked optical flow [16, 66] to improve stability in oc-
cluded and moving regions. Concurrently, MegaSaM [25]
further enhances pose and depth accuracy by integrating
DROID-SLAM [57], optical flow [66], and depth initializa-
tions from [40, 71], achieving state-of-the-art results. Alter-
natively, point-map-based approaches like MonST3R [73]
extend DUSt3R to dynamic scenes by fine-tuning with dy-
namic datasets and incorporating optical flow [66] to infer
dynamic object segmentation. DAS3R trains a DPT [44] on
top of MonST3R, enabling feedforward segmentation esti-
mation. CUT3R [63] fine-tunes MASt3R [24] on both static
and dynamic datasets, achieving feedforward reconstruc-
tion but without predicting dynamic object segmentation,
thereby entangling the static scene with dynamic objects.
Although effective, these methods require costly training on
diverse motion patterns to generalize well.

In contrast, we take an opposite path, exploring a
training-free and plug-in-play adaptation that enhances the
generalization of DUSt3R variants for dynamic scene re-
construction. Our method requires no fine-tuning and
comes at almost no additional cost, offering a scalable and
efficient alternative for handling real-world dynamic videos.

Motion Segmentation. Motion segmentation aims to pre-
dict dynamic object masks from video inputs. Classical
approaches generally rely on optical flow estimation [26,
31, 67, 70] and point tracking [7, 21, 35, 50, 69] to distin-
guish moving objects from the background. Being trained
solely on 2D data, they often struggle with occlusions and
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