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Figure 1. StarVector: A foundation model for SVG generation. StarVector’s multimodal architecture allows input from raster images
or text instructions. It converts a variety of raster visuals, including icons, logos, and technical diagrams, into vector graphics or generates
new SVGs from text. (Left) Inputs: raster images and text. (Right) Outputs: vectorized images (SVG)

Abstract

Scalable Vector Graphics (SVGs) are vital for modern im-
age rendering due to their scalability and versatility. Previ-
ous SVG generation methods have focused on curve-based
vectorization, lacking semantic understanding, often pro-
ducing artifacts, and struggling with SVG primitives beyond
path curves. To address these issues, we introduce StarVec-
tor, a multimodal large language model for SVG generation.
It performs image vectorization by understanding image
semantics and using SVG primitives for compact, precise
outputs. Unlike traditional methods, StarVector works di-
rectly in the SVG code space, leveraging visual understand-
ing to apply accurate SVG primitives. To train StarVector,
we create SVG-Stack, a diverse dataset of 2M samples that
enables generalization across vectorization tasks and pre-
cise use of primitives like ellipses, polygons, and text. We
address challenges in SVG evaluation, showing that pixel-
based metrics like MSE fail to capture the unique qualities
of vector graphics. We introduce SVG-Bench, a benchmark
across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-
SVG generation, and diagram generation. Using this setup,
StarVector achieves state-of-the-art performance, produc-

ing more compact and semantically rich SVGs.

1. Introduction

Vector graphics represent an archetypal form of image rep-
resentation, where visual compositions are constituted by
scalable primitive shapes [33, 43, 50, 50]. For modern im-
age rendering, Scalable Vector Graphics (SVGs) [60] have
become the standard for representing vector graphics. The
SVG format [25] provides a comprehensive set of primi-
tives and styling options. At its core, the path represents
basic curves [60]. Combined with primitives like polygon
or ellipse, SVGs define complex designs precisely.

The task of image vectorization, i.e., converting pixel-
based raster images into SVGs, stands as a fundamen-
tal challenge in vector graphics. The main challenge lies
in developing methods that generalize across diverse do-
mains, from fonts and logos to complex illustrations and
diagrams [7, 8, 69, 70]. Traditional approaches often rely
on approximating images through multiple paths [43, 50,
51, 59, 87]. This strategy can be inefficient as shown in Fig.
2 (Right). For instance, a circle shape could be represented
as long path or, more precisely and compactly, as a sin-
gle <circle/> primitive. Similarly, text elements should
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StarVector-8B
<svg width="300" height="300" ... version="1.1">
<rect x="110" y="10" width="160" height="230" fill="pink"

stroke="red"/>
<circle cx="160" cy="120" r="120" fill="tan" stroke="green"/>
<polygon points="110,20 280,125 175,280 5,180" fill="blue" />
</svg>

VTracer
<svg version="1.1" ... width="910" height="934">
<path d="M0 0 C300.3 0 600.6 0 910 0 ... Z " fill="#928299"/>
<path d="M0 0 C1.484 0.99000001 ..." fill="#A95869"/>
<path d="M0 0 C1.320 0.659999999 2.6399 ..." fill="#A95869"/>
<path d="M0 0 C4.151643338387942 0 7 ..." fill="#A95869"/>
<path d="M0 0 C-0.6599999999999682 0 7 ..." fill="#A95869"/>
...
</svg>

Figure 2. (Left) Image Vectorization results using StarVector-8B, LIVE, and VTracer. Each row shows the input image, generated SVGs,
and pixel-wise difference maps to highlight accuracy. StarVector-8B better preserves shapes, color gradients, and text, despite minor
misplacements. Notably, MSE often misaligns with visual quality, e.g., regarding the ‘planet’ example, StarVector’s MSE (0.009) is higher
than LIVE’s (0.0012) and VTracer’s (0.0039), yet StarVector preserves the color gradient. For the ‘diagram’ example, StarVector preserves
the text. DinoScore better reflects these details, consistently favoring StarVector. (Right) Curve vs Primitive-based Vectorization. SVG
code generated by StarVector and VTracer for the given image. StarVector effectively leverages shape primitives, resulting in a compact
and precise vectorization. VTracer decomposes the image into numerous paths, resulting in a more complex result with less semantic
clarity.

be vectorized as editable <text/> primitives to retain the
original textual content. This balance between curve-based
shape approximation and accurately recognizing primitives
has been previously unexplored and remains a core chal-
lenge in modern vectorization.

Previous vectorization approaches fall into two main cat-
egories: traditional image processing methods and deep
learning (DL)-based. Image processing methods [51, 59,
87] employ pixel-level analysis to trace vector curves, but
often produce overly complex representations with artifacts
and lack semantic understanding (Figure 2). While DL
approaches [13, 14, 67, 89] have advanced vector graph-
ics modeling through latent variable models and differen-
tiable rendering [43, 50], they typically struggle with gen-
eralization beyond specific domains and underutilize SVG
primitives. This limits their effectiveness for complex
SVGs like scientific diagrams and precludes their use in
modern multimodal tasks such as text-driven SVG gener-
ation [24, 65, 72, 96].

Recent advancements in Multimodal Large Language
Models (MLLMs) [2, 45] have integrated visual under-
standing into transformer [84] architectures while demon-
strating strong code generation capabilities [1, 42, 49, 55].
Building on these developments, we introduce image vec-
torization as an inverse rendering and code generation task,
leveraging MLLMs to generate SVG code directly from in-
put images. This approach naturally encompasses the full
range of SVG primitives, enhancing both semantic under-
standing and generation capabilities (Table 6).

We introduce StarVector, a foundational MLLM for
SVG generation. StarVector processes both images and
text instructions to produce compilable SVG code, lever-
aging SVG primitives to accurately represent vector graph-
ics. We build upon the StarCoder works [42, 49] to connect

the code generation research with SVG generation. Fig-
ure 3 describes the model architecture. It integrates an im-
age encoder that projects images into visual tokens, and a
transformer language model for learning the relationships
between instructions, visual features, and SVG code se-
quences, to perform image vectorization (Image-to-SVG) or
text-driven SVG Generation (Text-to-SVG) tasks. StarVec-
tor, performs primitive-aware vectorization through learned
semantic understanding, effectively leveraging SVG prim-
itives without explicit pixel reconstruction objectives. To
address the lack of large-scale SVG datasets for training
StarVector, we introduce SVG-Stack, containing over
2M SVG samples paired with rendered images and textual
descriptions.

Additionally, we find that conventional metrics like MSE
fail to adequately assess vector graphics fidelity, as demon-
strated in Figure 2. Instead, we propose DinoScore, a
perceptual similarity metric that better correlates with hu-
man perception of visual quality, and introduce SVG-
Bench, a comprehensive evaluation framework spanning 10
datasets and 3 tasks: Image-to-SVG, Text-to-SVG, and dia-
gram generation.

Contributions
1. We introduce StarVector, an MLLM capable of

image vectorization and text-driven SVG Generation,
uniquely preserving SVG primitives rather than produc-
ing multiple curves—a previously unexplored skill.

2. We create SVG-Stack, a large-scale dataset with 2M
samples, supporting Image-to-SVG and Text-to-SVG.

3. We develop SVG-Bench, an MLLM benchmark
with 10 datasets across 3 SVG tasks.

4. We conduct extensive experiments and evaluations, in-
cluding human assessments, demonstrating StarVector’s
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