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ABSTRACT

We employ new tools from mechanistic interpretability in order to ask whether
the internal structure of large language models (LLMs) shows correspondence to
the linguistic structures which underlie the languages on which they are trained.
In particular, we ask (1) when two languages employ the same morphosyntac-
tic processes, do LLMs handle them using shared internal circuitry? and (2) when
two languages require different morphosyntactic processes, do LLMs handle them
using different internal circuitry? Using English and Chinese multilingual and
monolingual models, we analyze the internal circuitry involved in two tasks. We
find evidence that models employ the same circuit to handle the same syntactic
process independently of the language in which it occurs, and that this is the case
even for monolingual models trained completely independently. Moreover, we
show that multilingual models employ language-specific components (attention
heads and feed-forward networks) when needed to handle linguistic processes
(e.g., morphological marking) that only exist in some languages. Together, our
results provide new insights into how LLMs trade off between exploiting com-
mon structures and preserving linguistic differences when tasked with modeling
multiple languages simultaneously.

1 INTRODUCTION

As large language models (LLMs) have become the undisputed state of the art for building English
language technology, there is decided interest in replicating their success across the full range of
human languages. However, very little is known about the internal structure of LLMs, and whether
such structure is conducive to acquiring broad multilingual capabilities. In fact, recent research
has produced seemingly contradictory findings, such as evidence that multilingual models adopt
language-specific representations (Tang et al., 2024; Choenni et al., 2024), while simultaneously
showing good transfer across languages even in cases that would appear to have no superficial simi-
larities that can be exploited to aid such transfer (Pires et al., 2019). Given the importance of building
technology for diverse languages, there is a need for a more precise understanding of how LLMs
represent structural similarities and differences across languages, and whether such representations
accord with our intuitive understanding of how languages work.

In this paper, we employ tools from the growing subfield of mechanistic interpretability in order to
ask whether the internal structure of LLMs show correspondence to the linguistic structures which
underlie the languages on which they are trained. We focus on only the most minimal criteria of
correspondence. In particular, we ask (1) when two languages employ the same morphosyntactic
processes, do LLMs handle them using shared internal circuitry? and (2) when two languages re-
quire different morphosyntactic processes, do LLMs handle them using different internal circuitry?
While these questions seem simple, their answers are non-obvious. LLMs readily employ overlap-
ping circuitry for tasks that do not necessarily seem “the same” to humans (Merullo et al., 2024),
and at the same time, neural networks frequently differentiate concepts due to surface form varia-
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tion (Olah et al., 2020), even when humans would easily identify them as part of the same abstract
category.

Using English and Chinese multilingual and monolingual models, we analyze the internal circuitry
involved in two tasks, one focusing on indirect object identification (IOI) which is virtually identical
between the languages, and one which involves generating paste tense verbs that require morpho-
logical marking in English but not in Chinese. Our contributions are as follows:

• We show that a multilingual model uses a single circuit to handle the same syntactic process
independently of the language in which it occurs (§3.4).

• We show that even monolingual models trained independently on English and Chinese
each adopt nearly the same circuit for this task (§3.5), suggesting a surprising amount of
consistency with how LLMs learn to handle this particular aspect of language modeling.

• Finally, we show that, when faced with similar tasks that require language-specific morpho-
logical processes, multilingual models still invoke a largely overlapping circuit, but employ
language-specific components as needed. Specifically, in our task, we find that the model
uses a circuit that consists primarily of attention heads to perform most of the task, but em-
ploys the feed-forward networks in English only to perform morphological marking that is
necessary in English but not in Chinese (§4).

Together, our results provide new insights into how LLMs trade off between exploiting common
structures and preserving linguistic differences when tasked with modeling multiple languages si-
multaneously. Our experiments can lay the groundwork for future works which seek to improve
cross-lingual transfer through more principled parameter updates (Wu et al., 2024), as well as work
which seeks to use LLMs in order to improve the study of linguistic and grammatical structure for
its own sake (Lakretz et al., 2021; Misra & Kim, 2024).

2 ANALYSIS METHODS

In this work, we are interested in analyzing how large language models (LLMs) trained in different
languages differ in terms of the algorithms and mechanisms they invoke to handle various aspects of
language processing. To do this, we employ a few recently developed analysis techniques, described
below. These techniques are similar in spirit, but differ in certain details that matter for our analysis.
For the most part, we find converging evidence for the paper’s main claims across both techniques.
When results differ in interesting ways, we comment in our results sections.

2.1 PATH PATCHING

Path patching (Wang et al., 2023; Goldowsky-Dill et al., 2023; Vig et al., 2020; Hanna et al., 2023;
Tigges et al., 2023b) has become the most standard and widely-accepted technique within the still-
new subfield of mechanistic interpretability. The goal of path patching is to localize specific circuits
within the weights in a trained neural network that play a causal role in model behavior. The setup
requires a pair of contrastive inputs, one referred to as the clean input and the other as the corrupted
input.

Path patching caches the activations for both inputs and then replaces the values of individual heads
on the clean input with the values those heads would have taken had they been run on the corrupted
input. In this way, the method aims to find the specific important head which maximally explains
the final logits. Working backward, i.e., through patching the important heads at each layer, path
patching has been used to identify full circuits that carry out the task. On its own, path patching
only identifies important heads. To gain insight into the specific functions of these heads, path
patching is usually used with logit attribution (Nostalgebraist, 2020; Belrose et al., 2023; Dar et al.,
2023; Yu et al., 2023) which projects activations into the vocabulary space, as well as with bespoke
analysis techniques invented by prior work to explain specific types of heads, such as duplicate-token
detection heads or copy heads (Wang et al., 2023).

The advantage of path patching is primarily its wide adoption, which makes it easier to trust results,
and enables us to compare with prior work in order to vet the results we are seeing (i.e., checking
that we reproduce prior work when we expect to do so). The primary downside is that the method
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