nanaaaa commited on
Commit
e31ac90
·
1 Parent(s): 528db76

Upload emotion_chinese.py

Browse files
Files changed (1) hide show
  1. emotion_chinese.py +72 -0
emotion_chinese.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """emotion_chinese_english dataset: A multilingual emotion dataset of wilde's children's literature"""
16
+
17
+
18
+ import datasets
19
+
20
+
21
+ _DESCRIPTION = """\
22
+ The emotion_chinese_english dataset is a multilingual emotion dataset annotated by language experts under a project. \
23
+ The dataset can be used for tasks such as multilingual (Chinese and English) emotion classification and identification.
24
+ """
25
+
26
+
27
+ _HOMEPAGE = "https://github.com/nana-lyj/emotion_chinese_english"
28
+
29
+ _BASE_URL = "https://github.com/nana-lyj/emotion_chinese_english/tree/main/data/"
30
+ _URLS = {
31
+ "train": f"{_BASE_URL}/train.tsv",
32
+ "dev": f"{_BASE_URL}/dev.tsv",
33
+ "test": f"{_BASE_URL}/test.tsv",
34
+ }
35
+ _LABEL_MAPPING = {0, 1, 2, 3, 4, 5, 6, 7, 8}
36
+
37
+
38
+ class WildeEmotion(datasets.GeneratorBasedBuilder):
39
+ """emotion_chinese_english dataset: A multilingual emotion dataset of wilde's children's literature"""
40
+
41
+ VERSION = datasets.Version("1.0.0")
42
+
43
+ def _info(self):
44
+ return datasets.DatasetInfo(
45
+ description=_DESCRIPTION,
46
+ features=datasets.Features(
47
+ {
48
+ "id": datasets.Value("int32"),
49
+ "sentence": datasets.Value("string"),
50
+ "label": datasets.ClassLabel(names=["joy", "sadness", "anger", "fear", "trust", "disgust", "surprise", "anticipation", "other"]),
51
+ }
52
+ ),
53
+ supervised_keys=None,
54
+ homepage=_HOMEPAGE,
55
+ )
56
+
57
+ def _split_generators(self, dl_manager):
58
+ downloaded_files = dl_manager.download(_URLS)
59
+ return [
60
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
61
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
62
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
63
+ ]
64
+
65
+ def _generate_examples(self, filepath):
66
+ with open(filepath, encoding="utf-8") as f:
67
+ lines = f.readlines()
68
+ for line in lines:
69
+ fields = line.strip().split("\t")
70
+ idx, verse_text, label = fields
71
+ label = _LABEL_MAPPING[int(label)]
72
+ yield int(idx), {"id": int(idx), "sentence": verse_text, "label": label}