Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
cf10ab6
·
verified ·
1 Parent(s): d56462d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +208 -60
README.md CHANGED
@@ -1,69 +1,217 @@
1
  ---
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - scifact
10
- task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: train
27
- num_bytes: 24585
28
- num_examples: 919
29
- - name: test
30
- num_bytes: 9092
31
- num_examples: 339
32
- - config_name: corpus
33
- features:
34
- - name: _id
35
- dtype: string
36
- - name: title
37
- dtype: string
38
- - name: text
39
- dtype: string
40
- splits:
41
- - name: corpus
42
- num_bytes: 7874970
43
- num_examples: 5183
44
- - config_name: queries
45
- features:
46
- - name: _id
47
- dtype: string
48
- - name: text
49
- dtype: string
50
- splits:
51
- - name: queries
52
- num_bytes: 111225
53
- num_examples: 1109
54
  configs:
55
- - config_name: default
56
- data_files:
57
- - split: train
58
- path: qrels/train.jsonl
59
- - split: test
60
- path: qrels/test.jsonl
61
- - config_name: corpus
62
- data_files:
63
- - split: corpus
64
- path: corpus.jsonl
65
- - config_name: queries
66
- data_files:
67
- - split: queries
68
- path: queries.jsonl
69
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
+ - eng
4
+ license: unknown
5
+ multilinguality: monolingual
6
  task_categories:
7
  - text-retrieval
8
+ task_ids: []
 
 
 
9
  config_names:
10
  - corpus
11
  tags:
12
+ - mteb
13
+ - text
14
  dataset_info:
15
+ - config_name: default
16
+ features:
17
+ - name: query-id
18
+ dtype: string
19
+ - name: corpus-id
20
+ dtype: string
21
+ - name: score
22
+ dtype: float64
23
+ splits:
24
+ - name: train
25
+ num_bytes: 24585
26
+ num_examples: 919
27
+ - name: test
28
+ num_bytes: 9092
29
+ num_examples: 339
30
+ - config_name: corpus
31
+ features:
32
+ - name: _id
33
+ dtype: string
34
+ - name: title
35
+ dtype: string
36
+ - name: text
37
+ dtype: string
38
+ splits:
39
+ - name: corpus
40
+ num_bytes: 7874970
41
+ num_examples: 5183
42
+ - config_name: queries
43
+ features:
44
+ - name: _id
45
+ dtype: string
46
+ - name: text
47
+ dtype: string
48
+ splits:
49
+ - name: queries
50
+ num_bytes: 111225
51
+ num_examples: 1109
52
  configs:
53
+ - config_name: default
54
+ data_files:
55
+ - split: train
56
+ path: qrels/train.jsonl
57
+ - split: test
58
+ path: qrels/test.jsonl
59
+ - config_name: corpus
60
+ data_files:
61
+ - split: corpus
62
+ path: corpus.jsonl
63
+ - config_name: queries
64
+ data_files:
65
+ - split: queries
66
+ path: queries.jsonl
67
+ ---
68
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
69
+
70
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
71
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">SciFact</h1>
72
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
73
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
74
+ </div>
75
+
76
+ SciFact verifies scientific claims using evidence from the research literature containing scientific paper abstracts.
77
+
78
+ | | |
79
+ |---------------|---------------------------------------------|
80
+ | Task category | t2t |
81
+ | Domains | Academic, Medical, Written |
82
+ | Reference | https://github.com/allenai/scifact |
83
+
84
+
85
+ ## How to evaluate on this task
86
+
87
+ You can evaluate an embedding model on this dataset using the following code:
88
+
89
+ ```python
90
+ import mteb
91
+
92
+ task = mteb.get_tasks(["SciFact"])
93
+ evaluator = mteb.MTEB(task)
94
+
95
+ model = mteb.get_model(YOUR_MODEL)
96
+ evaluator.run(model)
97
+ ```
98
+
99
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
100
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
101
+
102
+ ## Citation
103
+
104
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
105
+
106
+ ```bibtex
107
+
108
+ @inproceedings{specter2020cohan,
109
+ author = {Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
110
+ booktitle = {ACL},
111
+ title = {SPECTER: Document-level Representation Learning using Citation-informed Transformers},
112
+ year = {2020},
113
+ }
114
+
115
+
116
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
117
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
118
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
119
+ publisher = {arXiv},
120
+ journal={arXiv preprint arXiv:2502.13595},
121
+ year={2025},
122
+ url={https://arxiv.org/abs/2502.13595},
123
+ doi = {10.48550/arXiv.2502.13595},
124
+ }
125
+
126
+ @article{muennighoff2022mteb,
127
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
128
+ title = {MTEB: Massive Text Embedding Benchmark},
129
+ publisher = {arXiv},
130
+ journal={arXiv preprint arXiv:2210.07316},
131
+ year = {2022}
132
+ url = {https://arxiv.org/abs/2210.07316},
133
+ doi = {10.48550/ARXIV.2210.07316},
134
+ }
135
+ ```
136
+
137
+ # Dataset Statistics
138
+ <details>
139
+ <summary> Dataset Statistics</summary>
140
+
141
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
142
+
143
+ ```python
144
+ import mteb
145
+
146
+ task = mteb.get_task("SciFact")
147
+
148
+ desc_stats = task.metadata.descriptive_stats
149
+ ```
150
+
151
+ ```json
152
+ {
153
+ "train": {
154
+ "num_samples": 5992,
155
+ "number_of_characters": 7843137,
156
+ "num_documents": 5183,
157
+ "min_document_length": 221,
158
+ "average_document_length": 1499.4152035500674,
159
+ "max_document_length": 10127,
160
+ "unique_documents": 5183,
161
+ "num_queries": 809,
162
+ "min_query_length": 26,
163
+ "average_query_length": 88.58838071693448,
164
+ "max_query_length": 249,
165
+ "unique_queries": 809,
166
+ "none_queries": 0,
167
+ "num_relevant_docs": 919,
168
+ "min_relevant_docs_per_query": 1,
169
+ "average_relevant_docs_per_query": 1.1359703337453646,
170
+ "max_relevant_docs_per_query": 5,
171
+ "unique_relevant_docs": 565,
172
+ "num_instructions": null,
173
+ "min_instruction_length": null,
174
+ "average_instruction_length": null,
175
+ "max_instruction_length": null,
176
+ "unique_instructions": null,
177
+ "num_top_ranked": null,
178
+ "min_top_ranked_per_query": null,
179
+ "average_top_ranked_per_query": null,
180
+ "max_top_ranked_per_query": null
181
+ },
182
+ "test": {
183
+ "num_samples": 5483,
184
+ "number_of_characters": 7798573,
185
+ "num_documents": 5183,
186
+ "min_document_length": 221,
187
+ "average_document_length": 1499.4152035500674,
188
+ "max_document_length": 10127,
189
+ "unique_documents": 5183,
190
+ "num_queries": 300,
191
+ "min_query_length": 28,
192
+ "average_query_length": 90.34666666666666,
193
+ "max_query_length": 204,
194
+ "unique_queries": 300,
195
+ "none_queries": 0,
196
+ "num_relevant_docs": 339,
197
+ "min_relevant_docs_per_query": 1,
198
+ "average_relevant_docs_per_query": 1.13,
199
+ "max_relevant_docs_per_query": 5,
200
+ "unique_relevant_docs": 283,
201
+ "num_instructions": null,
202
+ "min_instruction_length": null,
203
+ "average_instruction_length": null,
204
+ "max_instruction_length": null,
205
+ "unique_instructions": null,
206
+ "num_top_ranked": null,
207
+ "min_top_ranked_per_query": null,
208
+ "average_top_ranked_per_query": null,
209
+ "max_top_ranked_per_query": null
210
+ }
211
+ }
212
+ ```
213
+
214
+ </details>
215
+
216
+ ---
217
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*