Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
68ef655
·
verified ·
1 Parent(s): b774495

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +180 -54
README.md CHANGED
@@ -1,64 +1,190 @@
1
  ---
 
 
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - nq
10
  task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_bytes: 133323
28
- num_examples: 4201
29
- - config_name: corpus
30
- features:
31
- - name: _id
32
- dtype: string
33
- - name: title
34
- dtype: string
35
- - name: text
36
- dtype: string
37
- splits:
38
- - name: corpus
39
- num_bytes: 1381417863
40
- num_examples: 2681468
41
- - config_name: queries
42
- features:
43
- - name: _id
44
- dtype: string
45
- - name: text
46
- dtype: string
47
- splits:
48
- - name: queries
49
- num_bytes: 220472
50
- num_examples: 3452
51
  configs:
52
- - config_name: default
53
- data_files:
54
- - split: test
55
- path: qrels/test.jsonl
56
- - config_name: corpus
57
- data_files:
58
- - split: corpus
59
- path: corpus.jsonl
60
- - config_name: queries
61
- data_files:
62
- - split: queries
63
- path: queries.jsonl
64
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
  language:
5
+ - eng
6
+ license: cc-by-nc-sa-3.0
7
+ multilinguality: monolingual
8
  task_categories:
9
  - text-retrieval
 
 
10
  task_ids:
11
+ - Question answering
12
  config_names:
13
  - corpus
14
  tags:
15
+ - mteb
16
+ - text
17
  dataset_info:
18
+ - config_name: default
19
+ features:
20
+ - name: query-id
21
+ dtype: string
22
+ - name: corpus-id
23
+ dtype: string
24
+ - name: score
25
+ dtype: float64
26
+ splits:
27
+ - name: test
28
+ num_bytes: 133323
29
+ num_examples: 4201
30
+ - config_name: corpus
31
+ features:
32
+ - name: _id
33
+ dtype: string
34
+ - name: title
35
+ dtype: string
36
+ - name: text
37
+ dtype: string
38
+ splits:
39
+ - name: corpus
40
+ num_bytes: 1381417863
41
+ num_examples: 2681468
42
+ - config_name: queries
43
+ features:
44
+ - name: _id
45
+ dtype: string
46
+ - name: text
47
+ dtype: string
48
+ splits:
49
+ - name: queries
50
+ num_bytes: 220472
51
+ num_examples: 3452
52
  configs:
53
+ - config_name: default
54
+ data_files:
55
+ - split: test
56
+ path: qrels/test.jsonl
57
+ - config_name: corpus
58
+ data_files:
59
+ - split: corpus
60
+ path: corpus.jsonl
61
+ - config_name: queries
62
+ data_files:
63
+ - split: queries
64
+ path: queries.jsonl
65
+ ---
66
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
67
+
68
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
69
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NQ</h1>
70
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
71
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
72
+ </div>
73
+
74
+ NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval
75
+
76
+ | | |
77
+ |---------------|---------------------------------------------|
78
+ | Task category | t2t |
79
+ | Domains | Written, Encyclopaedic |
80
+ | Reference | https://ai.google.com/research/NaturalQuestions/ |
81
+
82
+
83
+ ## How to evaluate on this task
84
+
85
+ You can evaluate an embedding model on this dataset using the following code:
86
+
87
+ ```python
88
+ import mteb
89
+
90
+ task = mteb.get_tasks(["NQ"])
91
+ evaluator = mteb.MTEB(task)
92
+
93
+ model = mteb.get_model(YOUR_MODEL)
94
+ evaluator.run(model)
95
+ ```
96
+
97
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
98
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
99
+
100
+ ## Citation
101
+
102
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
103
+
104
+ ```bibtex
105
+
106
+ @article{47761,
107
+ author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
108
+ and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee
109
+ and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le
110
+ and Slav Petrov},
111
+ journal = {Transactions of the Association of Computational
112
+ Linguistics},
113
+ title = {Natural Questions: a Benchmark for Question Answering Research},
114
+ year = {2019},
115
+ }
116
+
117
+
118
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
119
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
120
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
121
+ publisher = {arXiv},
122
+ journal={arXiv preprint arXiv:2502.13595},
123
+ year={2025},
124
+ url={https://arxiv.org/abs/2502.13595},
125
+ doi = {10.48550/arXiv.2502.13595},
126
+ }
127
+
128
+ @article{muennighoff2022mteb,
129
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
130
+ title = {MTEB: Massive Text Embedding Benchmark},
131
+ publisher = {arXiv},
132
+ journal={arXiv preprint arXiv:2210.07316},
133
+ year = {2022}
134
+ url = {https://arxiv.org/abs/2210.07316},
135
+ doi = {10.48550/ARXIV.2210.07316},
136
+ }
137
+ ```
138
+
139
+ # Dataset Statistics
140
+ <details>
141
+ <summary> Dataset Statistics</summary>
142
+
143
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
144
+
145
+ ```python
146
+ import mteb
147
+
148
+ task = mteb.get_task("NQ")
149
+
150
+ desc_stats = task.metadata.descriptive_stats
151
+ ```
152
+
153
+ ```json
154
+ {
155
+ "test": {
156
+ "num_samples": 2684920,
157
+ "number_of_characters": 1322743518,
158
+ "num_documents": 2681468,
159
+ "min_document_length": 5,
160
+ "average_document_length": 493.2287851281462,
161
+ "max_document_length": 17008,
162
+ "unique_documents": 2681468,
163
+ "num_queries": 3452,
164
+ "min_query_length": 25,
165
+ "average_query_length": 48.17902665121669,
166
+ "max_query_length": 100,
167
+ "unique_queries": 3452,
168
+ "none_queries": 0,
169
+ "num_relevant_docs": 4201,
170
+ "min_relevant_docs_per_query": 1,
171
+ "average_relevant_docs_per_query": 1.2169756662804172,
172
+ "max_relevant_docs_per_query": 4,
173
+ "unique_relevant_docs": 4201,
174
+ "num_instructions": null,
175
+ "min_instruction_length": null,
176
+ "average_instruction_length": null,
177
+ "max_instruction_length": null,
178
+ "unique_instructions": null,
179
+ "num_top_ranked": null,
180
+ "min_top_ranked_per_query": null,
181
+ "average_top_ranked_per_query": null,
182
+ "max_top_ranked_per_query": null
183
+ }
184
+ }
185
+ ```
186
+
187
+ </details>
188
+
189
+ ---
190
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*