Datasets:
mteb
/

Modalities:
Text
ArXiv:
License:
Samoed commited on
Commit
0b4c7d2
·
verified ·
1 Parent(s): 920fc15

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +214 -16
README.md CHANGED
@@ -1,28 +1,226 @@
1
  ---
2
- language:
3
- - fas
4
- - rus
5
- - zho
6
-
7
-
8
- multilinguality:
9
- - multilingual
10
-
11
  task_categories:
12
  - text-retrieval
13
-
 
 
 
14
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- From the NeuCLIR TREC Track 2022: https://arxiv.org/abs/2304.12367
17
 
18
- Generated from https://huggingface.co/datasets/neuclir/neuclir1
 
19
 
 
 
 
 
 
20
  ```
 
 
 
 
 
 
 
 
 
 
21
  @article{lawrie2023overview,
22
- title={Overview of the TREC 2022 NeuCLIR track},
23
- author={Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene},
24
- journal={arXiv preprint arXiv:2304.12367},
25
- year={2023}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  }
27
  ```
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - fas
6
+ - rus
7
+ - zho
8
+ license: odc-by
9
+ multilinguality: multilingual
 
10
  task_categories:
11
  - text-retrieval
12
+ task_ids: []
13
+ tags:
14
+ - mteb
15
+ - text
16
  ---
17
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
18
+
19
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
20
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NeuCLIR2022Retrieval</h1>
21
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
22
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
23
+ </div>
24
+
25
+ The task involves identifying and retrieving the documents that are relevant to the queries.
26
+
27
+ | | |
28
+ |---------------|---------------------------------------------|
29
+ | Task category | t2t |
30
+ | Domains | News, Written |
31
+ | Reference | https://neuclir.github.io/ |
32
+
33
+
34
+ ## How to evaluate on this task
35
 
36
+ You can evaluate an embedding model on this dataset using the following code:
37
 
38
+ ```python
39
+ import mteb
40
 
41
+ task = mteb.get_tasks(["NeuCLIR2022Retrieval"])
42
+ evaluator = mteb.MTEB(task)
43
+
44
+ model = mteb.get_model(YOUR_MODEL)
45
+ evaluator.run(model)
46
  ```
47
+
48
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
49
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
50
+
51
+ ## Citation
52
+
53
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
54
+
55
+ ```bibtex
56
+
57
  @article{lawrie2023overview,
58
+ author = {Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene},
59
+ journal = {arXiv preprint arXiv:2304.12367},
60
+ title = {Overview of the TREC 2022 NeuCLIR track},
61
+ year = {2023},
62
+ }
63
+
64
+
65
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
66
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
67
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
68
+ publisher = {arXiv},
69
+ journal={arXiv preprint arXiv:2502.13595},
70
+ year={2025},
71
+ url={https://arxiv.org/abs/2502.13595},
72
+ doi = {10.48550/arXiv.2502.13595},
73
+ }
74
+
75
+ @article{muennighoff2022mteb,
76
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
77
+ title = {MTEB: Massive Text Embedding Benchmark},
78
+ publisher = {arXiv},
79
+ journal={arXiv preprint arXiv:2210.07316},
80
+ year = {2022}
81
+ url = {https://arxiv.org/abs/2210.07316},
82
+ doi = {10.48550/ARXIV.2210.07316},
83
  }
84
  ```
85
 
86
+ # Dataset Statistics
87
+ <details>
88
+ <summary> Dataset Statistics</summary>
89
+
90
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
91
+
92
+ ```python
93
+ import mteb
94
+
95
+ task = mteb.get_task("NeuCLIR2022Retrieval")
96
+
97
+ desc_stats = task.metadata.descriptive_stats
98
+ ```
99
+
100
+ ```json
101
+ {
102
+ "test": {
103
+ "num_samples": 10039110,
104
+ "number_of_characters": 15033110515,
105
+ "num_documents": 10038768,
106
+ "min_document_length": 0,
107
+ "average_document_length": 1497.5033054852945,
108
+ "max_document_length": 24394,
109
+ "unique_documents": 10038768,
110
+ "num_queries": 342,
111
+ "min_query_length": 12,
112
+ "average_query_length": 65.06432748538012,
113
+ "max_query_length": 168,
114
+ "unique_queries": 342,
115
+ "none_queries": 0,
116
+ "num_relevant_docs": 103755,
117
+ "min_relevant_docs_per_query": 348,
118
+ "average_relevant_docs_per_query": 39.24285714285714,
119
+ "max_relevant_docs_per_query": 1288,
120
+ "unique_relevant_docs": 97926,
121
+ "num_instructions": null,
122
+ "min_instruction_length": null,
123
+ "average_instruction_length": null,
124
+ "max_instruction_length": null,
125
+ "unique_instructions": null,
126
+ "num_top_ranked": null,
127
+ "min_top_ranked_per_query": null,
128
+ "average_top_ranked_per_query": null,
129
+ "max_top_ranked_per_query": null,
130
+ "hf_subset_descriptive_stats": {
131
+ "fas": {
132
+ "num_samples": 2232130,
133
+ "number_of_characters": 4535674160,
134
+ "num_documents": 2232016,
135
+ "min_document_length": 99,
136
+ "average_document_length": 2032.093148525817,
137
+ "max_document_length": 24394,
138
+ "unique_documents": 2232016,
139
+ "num_queries": 114,
140
+ "min_query_length": 40,
141
+ "average_query_length": 85.4298245614035,
142
+ "max_query_length": 168,
143
+ "unique_queries": 114,
144
+ "none_queries": 0,
145
+ "num_relevant_docs": 34174,
146
+ "min_relevant_docs_per_query": 348,
147
+ "average_relevant_docs_per_query": 32.0,
148
+ "max_relevant_docs_per_query": 1288,
149
+ "unique_relevant_docs": 31702,
150
+ "num_instructions": null,
151
+ "min_instruction_length": null,
152
+ "average_instruction_length": null,
153
+ "max_instruction_length": null,
154
+ "unique_instructions": null,
155
+ "num_top_ranked": null,
156
+ "min_top_ranked_per_query": null,
157
+ "average_top_ranked_per_query": null,
158
+ "max_top_ranked_per_query": null
159
+ },
160
+ "rus": {
161
+ "num_samples": 4627657,
162
+ "number_of_characters": 8134827747,
163
+ "num_documents": 4627543,
164
+ "min_document_length": 0,
165
+ "average_document_length": 1757.9129983233004,
166
+ "max_document_length": 24212,
167
+ "unique_documents": 4627543,
168
+ "num_queries": 114,
169
+ "min_query_length": 29,
170
+ "average_query_length": 85.58771929824562,
171
+ "max_query_length": 160,
172
+ "unique_queries": 114,
173
+ "none_queries": 0,
174
+ "num_relevant_docs": 33006,
175
+ "min_relevant_docs_per_query": 364,
176
+ "average_relevant_docs_per_query": 41.977777777777774,
177
+ "max_relevant_docs_per_query": 1080,
178
+ "unique_relevant_docs": 31673,
179
+ "num_instructions": null,
180
+ "min_instruction_length": null,
181
+ "average_instruction_length": null,
182
+ "max_instruction_length": null,
183
+ "unique_instructions": null,
184
+ "num_top_ranked": null,
185
+ "min_top_ranked_per_query": null,
186
+ "average_top_ranked_per_query": null,
187
+ "max_top_ranked_per_query": null
188
+ },
189
+ "zho": {
190
+ "num_samples": 3179323,
191
+ "number_of_characters": 2362608608,
192
+ "num_documents": 3179209,
193
+ "min_document_length": 0,
194
+ "average_document_length": 743.1426659901881,
195
+ "max_document_length": 23870,
196
+ "unique_documents": 3179209,
197
+ "num_queries": 114,
198
+ "min_query_length": 12,
199
+ "average_query_length": 24.17543859649123,
200
+ "max_query_length": 46,
201
+ "unique_queries": 114,
202
+ "none_queries": 0,
203
+ "num_relevant_docs": 36575,
204
+ "min_relevant_docs_per_query": 470,
205
+ "average_relevant_docs_per_query": 43.53061224489796,
206
+ "max_relevant_docs_per_query": 1201,
207
+ "unique_relevant_docs": 34551,
208
+ "num_instructions": null,
209
+ "min_instruction_length": null,
210
+ "average_instruction_length": null,
211
+ "max_instruction_length": null,
212
+ "unique_instructions": null,
213
+ "num_top_ranked": null,
214
+ "min_top_ranked_per_query": null,
215
+ "average_top_ranked_per_query": null,
216
+ "max_top_ranked_per_query": null
217
+ }
218
+ }
219
+ }
220
+ }
221
+ ```
222
+
223
+ </details>
224
+
225
+ ---
226
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*