--- annotations_creators: - derived language: - ara - bam - bul - cmn - cym - deu - dza - ell - eng - eus - fas - fin - heb - hrv - ind - jpn - kor - mlt - nor - pol - rus - slk - spa - tha - tur - uig - urd - vie - zho license: unknown multilinguality: multilingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection configs: - config_name: default data_files: - path: train/*.parquet split: train - path: test/*.parquet split: test - path: validation/*.parquet split: validation - config_name: vie data_files: - path: train/vie.parquet split: train - path: test/vie.parquet split: test - path: validation/vie.parquet split: validation - config_name: eng data_files: - path: train/eng.parquet split: train - path: test/eng.parquet split: test - path: validation/eng.parquet split: validation - config_name: heb data_files: - path: train/heb.parquet split: train - path: test/heb.parquet split: test - path: validation/heb.parquet split: validation - config_name: urd data_files: - path: train/urd.parquet split: train - path: test/urd.parquet split: test - config_name: pol data_files: - path: train/pol.parquet split: train - path: test/pol.parquet split: test - config_name: fin data_files: - path: train/fin.parquet split: train - path: test/fin.parquet split: test - path: validation/fin.parquet split: validation - config_name: cmn data_files: - path: train/cmn.parquet split: train - path: test/cmn.parquet split: test - path: validation/cmn.parquet split: validation - config_name: rus data_files: - path: train/rus.parquet split: train - path: test/rus.parquet split: test - path: validation/rus.parquet split: validation - config_name: kor data_files: - path: train/kor.parquet split: train - path: test/kor.parquet split: test - path: validation/kor.parquet split: validation - config_name: fas data_files: - path: train/fas.parquet split: train - path: test/fas.parquet split: test - path: validation/fas.parquet split: validation - config_name: eus data_files: - path: train/eus.parquet split: train - path: test/eus.parquet split: test - path: validation/eus.parquet split: validation - config_name: nor data_files: - path: train/nor.parquet split: train - path: test/nor.parquet split: test - path: validation/nor.parquet split: validation - config_name: spa data_files: - path: train/spa.parquet split: train - path: test/spa.parquet split: test - path: validation/spa.parquet split: validation - config_name: ara data_files: - path: train/ara.parquet split: train - path: test/ara.parquet split: test - path: validation/ara.parquet split: validation - config_name: uig data_files: - path: train/uig.parquet split: train - path: test/uig.parquet split: test - config_name: hin data_files: - path: train/hin.parquet split: train - path: validation/hin.parquet split: validation - config_name: mlt data_files: - path: train/mlt.parquet split: train - path: test/mlt.parquet split: test - path: validation/mlt.parquet split: validation - config_name: jpn data_files: - path: train/jpn.parquet split: train - path: test/jpn.parquet split: test - path: validation/jpn.parquet split: validation - config_name: dza data_files: - path: train/dza.parquet split: train - path: test/dza.parquet split: test - path: validation/dza.parquet split: validation - config_name: zho data_files: - path: train/zho.parquet split: train - path: test/zho.parquet split: test - path: validation/zho.parquet split: validation - config_name: ind data_files: - path: train/ind.parquet split: train - path: test/ind.parquet split: test - path: validation/ind.parquet split: validation - config_name: slk data_files: - path: train/slk.parquet split: train - path: test/slk.parquet split: test - path: validation/slk.parquet split: validation - config_name: bul data_files: - path: train/bul.parquet split: train - path: test/bul.parquet split: test - path: validation/bul.parquet split: validation - config_name: bam data_files: - path: train/bam.parquet split: train - path: test/bam.parquet split: test - config_name: deu data_files: - path: train/deu.parquet split: train - path: test/deu.parquet split: test - path: validation/deu.parquet split: validation - config_name: tur data_files: - path: train/tur.parquet split: train - path: test/tur.parquet split: test - path: validation/tur.parquet split: validation - config_name: ell data_files: - path: train/ell.parquet split: train - path: test/ell.parquet split: test - path: validation/ell.parquet split: validation - config_name: tha data_files: - path: train/tha.parquet split: train - path: test/tha.parquet split: test - path: validation/tha.parquet split: validation - config_name: hrv data_files: - path: train/hrv.parquet split: train - path: test/hrv.parquet split: test - path: validation/hrv.parquet split: validation - config_name: cym data_files: - path: test/cym.parquet split: test tags: - mteb - text ---
Sentiment classification dataset with binary (positive vs negative sentiment) labels. Includes 30 languages and dialects. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Reviews, Written | | Reference | https://huggingface.co/datasets/mteb/multilingual-sentiment-classification | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["MultilingualSentimentClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{mollanorozy-etal-2023-cross, address = {Dubrovnik, Croatia}, author = {Mollanorozy, Sepideh and Tanti, Marc and Nissim, Malvina}, booktitle = {Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP}, doi = {10.18653/v1/2023.sigtyp-1.9}, editor = {Beinborn, Lisa and Goswami, Koustava and Murado{\\u{g}}lu, Saliha and Sorokin, Alexey and Kumar, Ritesh and Shcherbakov, Andreas and Ponti, Edoardo M. and Cotterell, Ryan and Vylomova, Ekaterina}, month = may, pages = {89--95}, publisher = {Association for Computational Linguistics}, title = {Cross-lingual Transfer Learning with \{P\}ersian}, url = {https://aclanthology.org/2023.sigtyp-1.9}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics