File size: 10,918 Bytes
ecad05e
c27092b
 
ecad05e
0f1799a
c27092b
 
c4ff66b
0f1799a
c27092b
0f1799a
 
c27092b
 
 
 
 
ecad05e
 
c27092b
 
 
c4ff66b
 
 
 
8f95949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27092b
 
 
ecad05e
c27092b
 
 
 
 
 
 
ecad05e
c27092b
 
 
 
ecad05e
c27092b
 
 
 
 
ecad05e
 
c27092b
 
 
 
 
 
 
 
 
 
 
 
ecad05e
c27092b
 
 
 
 
 
 
 
 
 
ecad05e
c27092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecad05e
 
 
c27092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecad05e
8f95949
c27092b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
annotations_creators:
- expert-annotated
language:
- ara
- cmn
- deu
- eng
- fra
- hin
- ita
- nld
- pol
- por
- spa
license: cc-by-4.0
multilinguality: multilingual
size_categories:
- 10K<n<100K
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-scoring
- sentiment-classification
- hate-speech-detection
configs:
- config_name: default
  data_files:
  - path: test/*.jsonl.gz
    split: test
- config_name: hin
  data_files:
  - path: multi-hatecheck/test/hin.jsonl.gz
    split: test
- config_name: spa
  data_files:
  - path: multi-hatecheck/test/spa.jsonl.gz
    split: test
- config_name: pol
  data_files:
  - path: multi-hatecheck/test/pol.jsonl.gz
    split: test
- config_name: eng
  data_files:
  - path: multi-hatecheck/test/eng.jsonl.gz
    split: test
- config_name: fra
  data_files:
  - path: multi-hatecheck/test/fra.jsonl.gz
    split: test
- config_name: nld
  data_files:
  - path: multi-hatecheck/test/nld.jsonl.gz
    split: test
- config_name: ita
  data_files:
  - path: multi-hatecheck/test/ita.jsonl.gz
    split: test
- config_name: deu
  data_files:
  - path: multi-hatecheck/test/deu.jsonl.gz
    split: test
- config_name: ara
  data_files:
  - path: multi-hatecheck/test/ara.jsonl.gz
    split: test
- config_name: por
  data_files:
  - path: multi-hatecheck/test/por.jsonl.gz
    split: test
- config_name: cmn
  data_files:
  - path: multi-hatecheck/test/cmn.jsonl.gz
    split: test
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MultiHateClassification</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

Hate speech detection dataset with binary
                       (hateful vs non-hateful) labels. Includes 25+ distinct types of hate
                       and challenging non-hate, and 11 languages.
                     

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2c                              |
| Domains       | Constructed, Written                               |
| Reference     | https://aclanthology.org/2022.woah-1.15/ |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["MultiHateClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{rottger-etal-2021-hatecheck,
  abstract = {Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck{'}s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.},
  address = {Online},
  author = {R{\"o}ttger, Paul  and
Vidgen, Bertie  and
Nguyen, Dong  and
Waseem, Zeerak  and
Margetts, Helen  and
Pierrehumbert, Janet},
  booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
  doi = {10.18653/v1/2021.acl-long.4},
  editor = {Zong, Chengqing  and
Xia, Fei  and
Li, Wenjie  and
Navigli, Roberto},
  month = aug,
  pages = {41--58},
  publisher = {Association for Computational Linguistics},
  title = {{H}ate{C}heck: Functional Tests for Hate Speech Detection Models},
  url = {https://aclanthology.org/2021.acl-long.4},
  year = {2021},
}

@inproceedings{rottger-etal-2022-multilingual,
  abstract = {Hate speech detection models are typically evaluated on held-out test sets. However, this risks painting an incomplete and potentially misleading picture of model performance because of increasingly well-documented systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, recent research has thus introduced functional tests for hate speech detection models. However, these tests currently only exist for English-language content, which means that they cannot support the development of more effective models in other languages spoken by billions across the world. To help address this issue, we introduce Multilingual HateCheck (MHC), a suite of functional tests for multilingual hate speech detection models. MHC covers 34 functionalities across ten languages, which is more languages than any other hate speech dataset. To illustrate MHC{'}s utility, we train and test a high-performing multilingual hate speech detection model, and reveal critical model weaknesses for monolingual and cross-lingual applications.},
  address = {Seattle, Washington (Hybrid)},
  author = {R{\"o}ttger, Paul  and
Seelawi, Haitham  and
Nozza, Debora  and
Talat, Zeerak  and
Vidgen, Bertie},
  booktitle = {Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)},
  doi = {10.18653/v1/2022.woah-1.15},
  editor = {Narang, Kanika  and
Mostafazadeh Davani, Aida  and
Mathias, Lambert  and
Vidgen, Bertie  and
Talat, Zeerak},
  month = jul,
  pages = {154--169},
  publisher = {Association for Computational Linguistics},
  title = {Multilingual {H}ate{C}heck: Functional Tests for Multilingual Hate Speech Detection Models},
  url = {https://aclanthology.org/2022.woah-1.15},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("MultiHateClassification")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 11000,
        "number_of_characters": 502013,
        "number_texts_intersect_with_train": 16,
        "min_text_length": 1,
        "average_text_length": 45.63754545454545,
        "max_text_length": 135,
        "unique_text": 10990,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 7661
            },
            "1": {
                "count": 3339
            }
        }
    },
    "train": {
        "num_samples": 11000,
        "number_of_characters": 505993,
        "number_texts_intersect_with_train": null,
        "min_text_length": 4,
        "average_text_length": 45.99936363636364,
        "max_text_length": 131,
        "unique_text": 10993,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 7659
            },
            "1": {
                "count": 3341
            }
        }
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*