Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
7d8780d
·
verified ·
1 Parent(s): c0f706b

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +214 -60
README.md CHANGED
@@ -1,69 +1,223 @@
1
  ---
 
 
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - dbpedia
10
- task_ids:
11
- - document-retrieval
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_bytes: 2588768
28
- num_examples: 43515
29
- - name: dev
30
- num_bytes: 347113
31
- num_examples: 5673
32
- - config_name: corpus
33
- features:
34
- - name: _id
35
- dtype: string
36
- - name: title
37
- dtype: string
38
- - name: text
39
- dtype: string
40
- splits:
41
- - name: corpus
42
- num_bytes: 1639231635
43
- num_examples: 4635922
44
- - config_name: queries
45
- features:
46
- - name: _id
47
- dtype: string
48
- - name: text
49
- dtype: string
50
- splits:
51
- - name: queries
52
- num_bytes: 25506
53
- num_examples: 467
54
  configs:
55
- - config_name: default
56
- data_files:
57
- - split: dev
58
- path: qrels/dev.jsonl
59
- - split: test
60
- path: qrels/test.jsonl
61
- - config_name: corpus
62
- data_files:
63
- - split: corpus
64
- path: corpus.jsonl
65
- - config_name: queries
66
- data_files:
67
- - split: queries
68
- path: queries.jsonl
69
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - eng
6
+ license: mit
7
+ multilinguality: monolingual
8
  task_categories:
9
  - text-retrieval
10
+ task_ids: []
 
 
 
11
  config_names:
12
  - corpus
13
  tags:
14
+ - mteb
15
+ - text
16
  dataset_info:
17
+ - config_name: default
18
+ features:
19
+ - name: query-id
20
+ dtype: string
21
+ - name: corpus-id
22
+ dtype: string
23
+ - name: score
24
+ dtype: float64
25
+ splits:
26
+ - name: test
27
+ num_bytes: 2588768
28
+ num_examples: 43515
29
+ - name: dev
30
+ num_bytes: 347113
31
+ num_examples: 5673
32
+ - config_name: corpus
33
+ features:
34
+ - name: _id
35
+ dtype: string
36
+ - name: title
37
+ dtype: string
38
+ - name: text
39
+ dtype: string
40
+ splits:
41
+ - name: corpus
42
+ num_bytes: 1639231635
43
+ num_examples: 4635922
44
+ - config_name: queries
45
+ features:
46
+ - name: _id
47
+ dtype: string
48
+ - name: text
49
+ dtype: string
50
+ splits:
51
+ - name: queries
52
+ num_bytes: 25506
53
+ num_examples: 467
54
  configs:
55
+ - config_name: default
56
+ data_files:
57
+ - split: dev
58
+ path: qrels/dev.jsonl
59
+ - split: test
60
+ path: qrels/test.jsonl
61
+ - config_name: corpus
62
+ data_files:
63
+ - split: corpus
64
+ path: corpus.jsonl
65
+ - config_name: queries
66
+ data_files:
67
+ - split: queries
68
+ path: queries.jsonl
69
+ ---
70
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
71
+
72
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
73
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">DBPedia</h1>
74
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
75
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
76
+ </div>
77
+
78
+ DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base
79
+
80
+ | | |
81
+ |---------------|---------------------------------------------|
82
+ | Task category | t2t |
83
+ | Domains | Written, Encyclopaedic |
84
+ | Reference | https://github.com/iai-group/DBpedia-Entity/ |
85
+
86
+
87
+ ## How to evaluate on this task
88
+
89
+ You can evaluate an embedding model on this dataset using the following code:
90
+
91
+ ```python
92
+ import mteb
93
+
94
+ task = mteb.get_tasks(["DBPedia"])
95
+ evaluator = mteb.MTEB(task)
96
+
97
+ model = mteb.get_model(YOUR_MODEL)
98
+ evaluator.run(model)
99
+ ```
100
+
101
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
102
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
103
+
104
+ ## Citation
105
+
106
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
107
+
108
+ ```bibtex
109
+
110
+ @inproceedings{Hasibi:2017:DVT,
111
+ author = {Hasibi, Faegheh and Nikolaev, Fedor and Xiong, Chenyan and Balog, Krisztian and Bratsberg, Svein Erik and Kotov, Alexander and Callan, Jamie},
112
+ booktitle = {Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval},
113
+ doi = {10.1145/3077136.3080751},
114
+ pages = {1265--1268},
115
+ publisher = {ACM},
116
+ series = {SIGIR '17},
117
+ title = {DBpedia-Entity V2: A Test Collection for Entity Search},
118
+ year = {2017},
119
+ }
120
+
121
+
122
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
123
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
124
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
125
+ publisher = {arXiv},
126
+ journal={arXiv preprint arXiv:2502.13595},
127
+ year={2025},
128
+ url={https://arxiv.org/abs/2502.13595},
129
+ doi = {10.48550/arXiv.2502.13595},
130
+ }
131
+
132
+ @article{muennighoff2022mteb,
133
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
134
+ title = {MTEB: Massive Text Embedding Benchmark},
135
+ publisher = {arXiv},
136
+ journal={arXiv preprint arXiv:2210.07316},
137
+ year = {2022}
138
+ url = {https://arxiv.org/abs/2210.07316},
139
+ doi = {10.48550/ARXIV.2210.07316},
140
+ }
141
+ ```
142
+
143
+ # Dataset Statistics
144
+ <details>
145
+ <summary> Dataset Statistics</summary>
146
+
147
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
148
+
149
+ ```python
150
+ import mteb
151
+
152
+ task = mteb.get_task("DBPedia")
153
+
154
+ desc_stats = task.metadata.descriptive_stats
155
+ ```
156
+
157
+ ```json
158
+ {
159
+ "dev": {
160
+ "num_samples": 4635989,
161
+ "number_of_characters": 1437939026,
162
+ "num_documents": 4635922,
163
+ "min_document_length": 8,
164
+ "average_document_length": 310.17285321021365,
165
+ "max_document_length": 42899,
166
+ "unique_documents": 4635922,
167
+ "num_queries": 67,
168
+ "min_query_length": 5,
169
+ "average_query_length": 27.940298507462686,
170
+ "max_query_length": 79,
171
+ "unique_queries": 67,
172
+ "none_queries": 0,
173
+ "num_relevant_docs": 5673,
174
+ "min_relevant_docs_per_query": 36,
175
+ "average_relevant_docs_per_query": 20.970149253731343,
176
+ "max_relevant_docs_per_query": 164,
177
+ "unique_relevant_docs": 5658,
178
+ "num_instructions": null,
179
+ "min_instruction_length": null,
180
+ "average_instruction_length": null,
181
+ "max_instruction_length": null,
182
+ "unique_instructions": null,
183
+ "num_top_ranked": null,
184
+ "min_top_ranked_per_query": null,
185
+ "average_top_ranked_per_query": null,
186
+ "max_top_ranked_per_query": null
187
+ },
188
+ "test": {
189
+ "num_samples": 4636322,
190
+ "number_of_characters": 1437950788,
191
+ "num_documents": 4635922,
192
+ "min_document_length": 8,
193
+ "average_document_length": 310.17285321021365,
194
+ "max_document_length": 42899,
195
+ "unique_documents": 4635922,
196
+ "num_queries": 400,
197
+ "min_query_length": 6,
198
+ "average_query_length": 34.085,
199
+ "max_query_length": 88,
200
+ "unique_queries": 400,
201
+ "none_queries": 0,
202
+ "num_relevant_docs": 43515,
203
+ "min_relevant_docs_per_query": 21,
204
+ "average_relevant_docs_per_query": 38.215,
205
+ "max_relevant_docs_per_query": 1499,
206
+ "unique_relevant_docs": 40724,
207
+ "num_instructions": null,
208
+ "min_instruction_length": null,
209
+ "average_instruction_length": null,
210
+ "max_instruction_length": null,
211
+ "unique_instructions": null,
212
+ "num_top_ranked": null,
213
+ "min_top_ranked_per_query": null,
214
+ "average_top_ranked_per_query": null,
215
+ "max_top_ranked_per_query": null
216
+ }
217
+ }
218
+ ```
219
+
220
+ </details>
221
+
222
+ ---
223
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*