Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
380b244
·
verified ·
1 Parent(s): 6c6430d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +188 -54
README.md CHANGED
@@ -1,64 +1,198 @@
1
  ---
 
 
2
  language:
3
- - en
4
- multilinguality:
5
- - monolingual
6
  task_categories:
7
  - text-retrieval
8
- source_datasets:
9
- - cqadupstack-unix
10
  task_ids:
11
- - document-retrieval
 
12
  config_names:
13
  - corpus
14
  tags:
15
- - text-retrieval
 
16
  dataset_info:
17
- - config_name: default
18
- features:
19
- - name: query-id
20
- dtype: string
21
- - name: corpus-id
22
- dtype: string
23
- - name: score
24
- dtype: float64
25
- splits:
26
- - name: test
27
- num_bytes: 44636
28
- num_examples: 1693
29
- - config_name: corpus
30
- features:
31
- - name: _id
32
- dtype: string
33
- - name: title
34
- dtype: string
35
- - name: text
36
- dtype: string
37
- splits:
38
- - name: corpus
39
- num_bytes: 48471433
40
- num_examples: 47382
41
- - config_name: queries
42
- features:
43
- - name: _id
44
- dtype: string
45
- - name: text
46
- dtype: string
47
- splits:
48
- - name: queries
49
- num_bytes: 68069
50
- num_examples: 1072
51
  configs:
52
- - config_name: default
53
- data_files:
54
- - split: test
55
- path: qrels/test.jsonl
56
- - config_name: corpus
57
- data_files:
58
- - split: corpus
59
- path: corpus.jsonl
60
- - config_name: queries
61
- data_files:
62
- - split: queries
63
- path: queries.jsonl
64
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
  language:
5
+ - eng
6
+ license: apache-2.0
7
+ multilinguality: monolingual
8
  task_categories:
9
  - text-retrieval
 
 
10
  task_ids:
11
+ - Question answering
12
+ - Duplicate Detection
13
  config_names:
14
  - corpus
15
  tags:
16
+ - mteb
17
+ - text
18
  dataset_info:
19
+ - config_name: default
20
+ features:
21
+ - name: query-id
22
+ dtype: string
23
+ - name: corpus-id
24
+ dtype: string
25
+ - name: score
26
+ dtype: float64
27
+ splits:
28
+ - name: test
29
+ num_bytes: 44636
30
+ num_examples: 1693
31
+ - config_name: corpus
32
+ features:
33
+ - name: _id
34
+ dtype: string
35
+ - name: title
36
+ dtype: string
37
+ - name: text
38
+ dtype: string
39
+ splits:
40
+ - name: corpus
41
+ num_bytes: 48471433
42
+ num_examples: 47382
43
+ - config_name: queries
44
+ features:
45
+ - name: _id
46
+ dtype: string
47
+ - name: text
48
+ dtype: string
49
+ splits:
50
+ - name: queries
51
+ num_bytes: 68069
52
+ num_examples: 1072
53
  configs:
54
+ - config_name: default
55
+ data_files:
56
+ - split: test
57
+ path: qrels/test.jsonl
58
+ - config_name: corpus
59
+ data_files:
60
+ - split: corpus
61
+ path: corpus.jsonl
62
+ - config_name: queries
63
+ data_files:
64
+ - split: queries
65
+ path: queries.jsonl
66
+ ---
67
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
68
+
69
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
70
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CQADupstackUnixRetrieval</h1>
71
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
72
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
73
+ </div>
74
+
75
+ CQADupStack: A Benchmark Data Set for Community Question-Answering Research
76
+
77
+ | | |
78
+ |---------------|---------------------------------------------|
79
+ | Task category | t2t |
80
+ | Domains | Written, Web, Programming |
81
+ | Reference | http://nlp.cis.unimelb.edu.au/resources/cqadupstack/ |
82
+
83
+
84
+ ## How to evaluate on this task
85
+
86
+ You can evaluate an embedding model on this dataset using the following code:
87
+
88
+ ```python
89
+ import mteb
90
+
91
+ task = mteb.get_tasks(["CQADupstackUnixRetrieval"])
92
+ evaluator = mteb.MTEB(task)
93
+
94
+ model = mteb.get_model(YOUR_MODEL)
95
+ evaluator.run(model)
96
+ ```
97
+
98
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
99
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
100
+
101
+ ## Citation
102
+
103
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
104
+
105
+ ```bibtex
106
+
107
+ @inproceedings{hoogeveen2015,
108
+ acmid = {2838934},
109
+ address = {New York, NY, USA},
110
+ articleno = {3},
111
+ author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
112
+ booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
113
+ doi = {10.1145/2838931.2838934},
114
+ isbn = {978-1-4503-4040-3},
115
+ location = {Parramatta, NSW, Australia},
116
+ numpages = {8},
117
+ pages = {3:1--3:8},
118
+ publisher = {ACM},
119
+ series = {ADCS '15},
120
+ title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
121
+ url = {http://doi.acm.org/10.1145/2838931.2838934},
122
+ year = {2015},
123
+ }
124
+
125
+
126
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
127
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
128
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
129
+ publisher = {arXiv},
130
+ journal={arXiv preprint arXiv:2502.13595},
131
+ year={2025},
132
+ url={https://arxiv.org/abs/2502.13595},
133
+ doi = {10.48550/arXiv.2502.13595},
134
+ }
135
+
136
+ @article{muennighoff2022mteb,
137
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
138
+ title = {MTEB: Massive Text Embedding Benchmark},
139
+ publisher = {arXiv},
140
+ journal={arXiv preprint arXiv:2210.07316},
141
+ year = {2022}
142
+ url = {https://arxiv.org/abs/2210.07316},
143
+ doi = {10.48550/ARXIV.2210.07316},
144
+ }
145
+ ```
146
+
147
+ # Dataset Statistics
148
+ <details>
149
+ <summary> Dataset Statistics</summary>
150
+
151
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
152
+
153
+ ```python
154
+ import mteb
155
+
156
+ task = mteb.get_task("CQADupstackUnixRetrieval")
157
+
158
+ desc_stats = task.metadata.descriptive_stats
159
+ ```
160
+
161
+ ```json
162
+ {
163
+ "test": {
164
+ "num_samples": 48454,
165
+ "number_of_characters": 47711333,
166
+ "num_documents": 47382,
167
+ "min_document_length": 56,
168
+ "average_document_length": 1005.8120383267908,
169
+ "max_document_length": 32623,
170
+ "unique_documents": 47382,
171
+ "num_queries": 1072,
172
+ "min_query_length": 15,
173
+ "average_query_length": 50.32369402985075,
174
+ "max_query_length": 124,
175
+ "unique_queries": 1072,
176
+ "none_queries": 0,
177
+ "num_relevant_docs": 1693,
178
+ "min_relevant_docs_per_query": 1,
179
+ "average_relevant_docs_per_query": 1.5792910447761195,
180
+ "max_relevant_docs_per_query": 22,
181
+ "unique_relevant_docs": 1693,
182
+ "num_instructions": null,
183
+ "min_instruction_length": null,
184
+ "average_instruction_length": null,
185
+ "max_instruction_length": null,
186
+ "unique_instructions": null,
187
+ "num_top_ranked": null,
188
+ "min_top_ranked_per_query": null,
189
+ "average_top_ranked_per_query": null,
190
+ "max_top_ranked_per_query": null
191
+ }
192
+ }
193
+ ```
194
+
195
+ </details>
196
+
197
+ ---
198
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*