Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
ee3b1cc
·
verified ·
1 Parent(s): 15e0930

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +143 -0
README.md CHANGED
@@ -1,4 +1,14 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: sentence1
@@ -23,4 +33,137 @@ configs:
23
  path: data/train-*
24
  - split: test
25
  path: data/test-*
 
 
 
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - pol
6
+ license: cc-by-3.0
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - semantic-similarity-classification
12
  dataset_info:
13
  features:
14
  - name: sentence1
 
33
  path: data/train-*
34
  - split: test
35
  path: data/test-*
36
+ tags:
37
+ - mteb
38
+ - text
39
  ---
40
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
41
+
42
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
43
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">PSC</h1>
44
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
45
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
46
+ </div>
47
+
48
+ Polish Summaries Corpus
49
+
50
+ | | |
51
+ |---------------|---------------------------------------------|
52
+ | Task category | t2t |
53
+ | Domains | News, Written |
54
+ | Reference | http://www.lrec-conf.org/proceedings/lrec2014/pdf/1211_Paper.pdf |
55
+
56
+
57
+ ## How to evaluate on this task
58
+
59
+ You can evaluate an embedding model on this dataset using the following code:
60
+
61
+ ```python
62
+ import mteb
63
+
64
+ task = mteb.get_tasks(["PSC"])
65
+ evaluator = mteb.MTEB(task)
66
+
67
+ model = mteb.get_model(YOUR_MODEL)
68
+ evaluator.run(model)
69
+ ```
70
+
71
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
72
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
73
+
74
+ ## Citation
75
+
76
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
77
+
78
+ ```bibtex
79
+
80
+ @inproceedings{ogrodniczuk-kopec-2014-polish,
81
+ abstract = {This article presents the Polish Summaries Corpus, a new resource created to support the development and evaluation of the tools for automated single-document summarization of Polish. The Corpus contains a large number of manual summaries of news articles, with many independently created summaries for a single text. Such approach is supposed to overcome the annotator bias, which is often described as a problem during the evaluation of the summarization algorithms against a single gold standard. There are several summarizers developed specifically for Polish language, but their in-depth evaluation and comparison was impossible without a large, manually created corpus. We present in detail the process of text selection, annotation process and the contents of the corpus, which includes both abstract free-word summaries, as well as extraction-based summaries created by selecting text spans from the original document. Finally, we describe how that resource could be used not only for the evaluation of the existing summarization tools, but also for studies on the human summarization process in Polish language.},
82
+ address = {Reykjavik, Iceland},
83
+ author = {Ogrodniczuk, Maciej and
84
+ Kope{\'c}, Mateusz},
85
+ booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)},
86
+ editor = {Calzolari, Nicoletta and
87
+ Choukri, Khalid and
88
+ Declerck, Thierry and
89
+ Loftsson, Hrafn and
90
+ Maegaard, Bente and
91
+ Mariani, Joseph and
92
+ Moreno, Asuncion and
93
+ Odijk, Jan and
94
+ Piperidis, Stelios},
95
+ month = may,
96
+ pages = {3712--3715},
97
+ publisher = {European Language Resources Association (ELRA)},
98
+ title = {The {P}olish Summaries Corpus},
99
+ url = {http://www.lrec-conf.org/proceedings/lrec2014/pdf/1211_Paper.pdf},
100
+ year = {2014},
101
+ }
102
+
103
+
104
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
105
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
106
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
107
+ publisher = {arXiv},
108
+ journal={arXiv preprint arXiv:2502.13595},
109
+ year={2025},
110
+ url={https://arxiv.org/abs/2502.13595},
111
+ doi = {10.48550/arXiv.2502.13595},
112
+ }
113
+
114
+ @article{muennighoff2022mteb,
115
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
116
+ title = {MTEB: Massive Text Embedding Benchmark},
117
+ publisher = {arXiv},
118
+ journal={arXiv preprint arXiv:2210.07316},
119
+ year = {2022}
120
+ url = {https://arxiv.org/abs/2210.07316},
121
+ doi = {10.48550/ARXIV.2210.07316},
122
+ }
123
+ ```
124
+
125
+ # Dataset Statistics
126
+ <details>
127
+ <summary> Dataset Statistics</summary>
128
+
129
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
130
+
131
+ ```python
132
+ import mteb
133
+
134
+ task = mteb.get_task("PSC")
135
+
136
+ desc_stats = task.metadata.descriptive_stats
137
+ ```
138
+
139
+ ```json
140
+ {
141
+ "test": {
142
+ "num_samples": 1078,
143
+ "number_of_characters": 1206570,
144
+ "unique_pairs": 1074,
145
+ "min_sentence1_length": 314,
146
+ "avg_sentence1_length": 549.2820037105752,
147
+ "max_sentence1_length": 1445,
148
+ "unique_sentence1": 507,
149
+ "min_sentence2_length": 293,
150
+ "avg_sentence2_length": 569.9851576994434,
151
+ "max_sentence2_length": 1534,
152
+ "unique_sentence2": 406,
153
+ "unique_labels": 2,
154
+ "labels": {
155
+ "0": {
156
+ "count": 750
157
+ },
158
+ "1": {
159
+ "count": 328
160
+ }
161
+ }
162
+ }
163
+ }
164
+ ```
165
+
166
+ </details>
167
+
168
+ ---
169
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*