--- annotations_creators: - human-annotated language: - ace - ban - bbc - bjn - bug - eng - ind - jav - mad - min - nij - sun license: cc-by-sa-4.0 multilinguality: multilingual task_categories: - translation task_ids: [] dataset_info: - config_name: eng-ace features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 158722 num_examples: 500 download_size: 104175 dataset_size: 158722 - config_name: eng-ban features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 161380 num_examples: 500 download_size: 106223 dataset_size: 161380 - config_name: eng-bbc features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 163184 num_examples: 500 download_size: 106140 dataset_size: 163184 - config_name: eng-bjn features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 161328 num_examples: 500 download_size: 104640 dataset_size: 161328 - config_name: eng-bug features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 165552 num_examples: 500 download_size: 107833 dataset_size: 165552 - config_name: eng-ind features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 161480 num_examples: 500 download_size: 104291 dataset_size: 161480 - config_name: eng-jav features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 159271 num_examples: 500 download_size: 104827 dataset_size: 159271 - config_name: eng-mad features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 161942 num_examples: 500 download_size: 106027 dataset_size: 161942 - config_name: eng-min features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 158912 num_examples: 500 download_size: 104487 dataset_size: 158912 - config_name: eng-nij features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 159800 num_examples: 500 download_size: 103637 dataset_size: 159800 - config_name: eng-sun features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 161025 num_examples: 500 download_size: 105046 dataset_size: 161025 configs: - config_name: eng-ace data_files: - split: train path: eng-ace/train-* - config_name: eng-ban data_files: - split: train path: eng-ban/train-* - config_name: eng-bbc data_files: - split: train path: eng-bbc/train-* - config_name: eng-bjn data_files: - split: train path: eng-bjn/train-* - config_name: eng-bug data_files: - split: train path: eng-bug/train-* - config_name: eng-ind data_files: - split: train path: eng-ind/train-* - config_name: eng-jav data_files: - split: train path: eng-jav/train-* - config_name: eng-mad data_files: - split: train path: eng-mad/train-* - config_name: eng-min data_files: - split: train path: eng-min/train-* - config_name: eng-nij data_files: - split: train path: eng-nij/train-* - config_name: eng-sun data_files: - split: train path: eng-sun/train-* tags: - mteb - text ---

NusaXBitextMining

An MTEB dataset
Massive Text Embedding Benchmark
NusaX is a parallel dataset for machine translation and sentiment analysis on 11 Indonesia languages and English. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Reviews, Written | | Reference | https://huggingface.co/datasets/indonlp/NusaX-senti/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["NusaXBitextMining"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{winata2023nusax, author = {Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya, Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony, Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo, Radityo Eko and Fung, Pascale and others}, booktitle = {Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics}, pages = {815--834}, title = {NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages}, year = {2023}, } @misc{winata2024miners, archiveprefix = {arXiv}, author = {Genta Indra Winata and Ruochen Zhang and David Ifeoluwa Adelani}, eprint = {2406.07424}, primaryclass = {cs.CL}, title = {MINERS: Multilingual Language Models as Semantic Retrievers}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("NusaXBitextMining") desc_stats = task.metadata.descriptive_stats ``` ```json { "train": { "num_samples": 5500, "number_of_characters": 1728596, "unique_pairs": 5499, "min_sentence1_length": 18, "average_sentence1_length": 161.66, "max_sentence1_length": 562, "unique_sentence1": 500, "min_sentence2_length": 7, "average_sentence2_length": 152.63018181818182, "max_sentence2_length": 550, "unique_sentence2": 5498 } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*