---
annotations_creators:
- human-annotated
language:
- bbc
- bew
- bug
- jav
- mad
- mak
- min
- mui
- rej
- sun
license: apache-2.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: bew
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2185124
num_examples: 2698
- name: validation
num_bytes: 353563
num_examples: 430
- name: test
num_bytes: 646240
num_examples: 800
download_size: 1925803
dataset_size: 3184927
- config_name: btk
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 799635
num_examples: 1149
- name: validation
num_bytes: 201035
num_examples: 292
- name: test
num_bytes: 345218
num_examples: 500
download_size: 806158
dataset_size: 1345888
- config_name: bug
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 67939
num_examples: 87
- name: validation
num_bytes: 38946
num_examples: 50
- name: test
num_bytes: 238564
num_examples: 300
download_size: 210832
dataset_size: 345449
- config_name: jav
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1953278
num_examples: 2800
- name: validation
num_bytes: 309172
num_examples: 440
- name: test
num_bytes: 558183
num_examples: 800
download_size: 1637364
dataset_size: 2820633
- config_name: mad
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 718438
num_examples: 999
- name: validation
num_bytes: 188269
num_examples: 263
- name: test
num_bytes: 359056
num_examples: 500
download_size: 774503
dataset_size: 1265763
- config_name: mak
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1084770
num_examples: 1499
- name: validation
num_bytes: 223128
num_examples: 304
- name: test
num_bytes: 360338
num_examples: 500
download_size: 997065
dataset_size: 1668236
- config_name: min
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1497274
num_examples: 1996
- name: validation
num_bytes: 264261
num_examples: 357
- name: test
num_bytes: 600012
num_examples: 800
download_size: 1355069
dataset_size: 2361547
- config_name: mui
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 164859
num_examples: 201
- name: validation
num_bytes: 62985
num_examples: 75
- name: test
num_bytes: 327059
num_examples: 400
download_size: 329620
dataset_size: 554903
- config_name: rej
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 105377
num_examples: 136
- name: validation
num_bytes: 37786
num_examples: 50
- name: test
num_bytes: 237603
num_examples: 300
download_size: 213553
dataset_size: 380766
- config_name: sun
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1854384
num_examples: 2398
- name: validation
num_bytes: 315336
num_examples: 400
- name: test
num_bytes: 621586
num_examples: 800
download_size: 1658848
dataset_size: 2791306
configs:
- config_name: bew
data_files:
- split: train
path: bew/train-*
- split: validation
path: bew/validation-*
- split: test
path: bew/test-*
- config_name: btk
data_files:
- split: train
path: btk/train-*
- split: validation
path: btk/validation-*
- split: test
path: btk/test-*
- config_name: bug
data_files:
- split: train
path: bug/train-*
- split: validation
path: bug/validation-*
- split: test
path: bug/test-*
- config_name: jav
data_files:
- split: train
path: jav/train-*
- split: validation
path: jav/validation-*
- split: test
path: jav/test-*
- config_name: mad
data_files:
- split: train
path: mad/train-*
- split: validation
path: mad/validation-*
- split: test
path: mad/test-*
- config_name: mak
data_files:
- split: train
path: mak/train-*
- split: validation
path: mak/validation-*
- split: test
path: mak/test-*
- config_name: min
data_files:
- split: train
path: min/train-*
- split: validation
path: min/validation-*
- split: test
path: min/test-*
- config_name: mui
data_files:
- split: train
path: mui/train-*
- split: validation
path: mui/validation-*
- split: test
path: mui/test-*
- config_name: rej
data_files:
- split: train
path: rej/train-*
- split: validation
path: rej/validation-*
- split: test
path: rej/test-*
- config_name: sun
data_files:
- split: train
path: sun/train-*
- split: validation
path: sun/validation-*
- split: test
path: sun/test-*
tags:
- mteb
- text
---
NusaParagraphEmotionClassification
Massive Text Embedding Benchmark
NusaParagraphEmotionClassification is a multi-class emotion classification on 10 Indonesian languages from the NusaParagraph dataset.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Non-fiction, Fiction, Written |
| Reference | https://github.com/IndoNLP/nusa-writes |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["NusaParagraphEmotionClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{cahyawijaya-etal-2023-nusawrites,
address = {Nusa Dua, Bali},
author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and Linuwih, Hanung and Wilie, Bryan and Muridan, Galih and Winata, Genta and Moeljadi, David and Aji, Alham Fikri and Purwarianti, Ayu and Fung, Pascale},
booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
editor = {Park, Jong C. and Arase, Yuki and Hu, Baotian and Lu, Wei and Wijaya, Derry and Purwarianti, Ayu and Krisnadhi, Adila Alfa},
month = nov,
pages = {921--945},
publisher = {Association for Computational Linguistics},
title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
url = {https://aclanthology.org/2023.ijcnlp-main.60},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("NusaParagraphEmotionClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 5700,
"number_of_characters": 4194411,
"number_texts_intersect_with_train": 9,
"min_text_length": 495,
"average_text_length": 735.8615789473685,
"max_text_length": 1842,
"unique_text": 5697,
"unique_labels": 7,
"labels": {
"4": {
"count": 649
},
"5": {
"count": 687
},
"3": {
"count": 896
},
"0": {
"count": 1518
},
"6": {
"count": 496
},
"2": {
"count": 778
},
"1": {
"count": 676
}
},
"hf_subset_descriptive_stats": {
"btk": {
"num_samples": 500,
"number_of_characters": 339185,
"number_texts_intersect_with_train": 4,
"min_text_length": 495,
"average_text_length": 678.37,
"max_text_length": 1808,
"unique_text": 499,
"unique_labels": 7,
"labels": {
"4": {
"count": 58
},
"5": {
"count": 71
},
"3": {
"count": 84
},
"0": {
"count": 103
},
"6": {
"count": 51
},
"2": {
"count": 73
},
"1": {
"count": 60
}
}
},
"bew": {
"num_samples": 800,
"number_of_characters": 625862,
"number_texts_intersect_with_train": 3,
"min_text_length": 561,
"average_text_length": 782.3275,
"max_text_length": 1598,
"unique_text": 798,
"unique_labels": 7,
"labels": {
"0": {
"count": 221
},
"5": {
"count": 96
},
"6": {
"count": 82
},
"1": {
"count": 126
},
"3": {
"count": 100
},
"4": {
"count": 83
},
"2": {
"count": 92
}
}
},
"bug": {
"num_samples": 300,
"number_of_characters": 234950,
"number_texts_intersect_with_train": 0,
"min_text_length": 583,
"average_text_length": 783.1666666666666,
"max_text_length": 1255,
"unique_text": 300,
"unique_labels": 7,
"labels": {
"0": {
"count": 82
},
"4": {
"count": 45
},
"3": {
"count": 65
},
"5": {
"count": 23
},
"1": {
"count": 24
},
"6": {
"count": 23
},
"2": {
"count": 38
}
}
},
"jav": {
"num_samples": 800,
"number_of_characters": 548221,
"number_texts_intersect_with_train": 0,
"min_text_length": 564,
"average_text_length": 685.27625,
"max_text_length": 1106,
"unique_text": 800,
"unique_labels": 7,
"labels": {
"3": {
"count": 101
},
"5": {
"count": 87
},
"6": {
"count": 90
},
"1": {
"count": 93
},
"4": {
"count": 102
},
"0": {
"count": 222
},
"2": {
"count": 105
}
}
},
"mad": {
"num_samples": 500,
"number_of_characters": 352867,
"number_texts_intersect_with_train": 2,
"min_text_length": 585,
"average_text_length": 705.734,
"max_text_length": 1260,
"unique_text": 500,
"unique_labels": 7,
"labels": {
"5": {
"count": 49
},
"0": {
"count": 163
},
"3": {
"count": 110
},
"1": {
"count": 28
},
"2": {
"count": 96
},
"4": {
"count": 51
},
"6": {
"count": 3
}
}
},
"mak": {
"num_samples": 500,
"number_of_characters": 352366,
"number_texts_intersect_with_train": 0,
"min_text_length": 498,
"average_text_length": 704.732,
"max_text_length": 1096,
"unique_text": 500,
"unique_labels": 7,
"labels": {
"5": {
"count": 78
},
"3": {
"count": 110
},
"4": {
"count": 69
},
"1": {
"count": 44
},
"2": {
"count": 71
},
"6": {
"count": 25
},
"0": {
"count": 103
}
}
},
"min": {
"num_samples": 800,
"number_of_characters": 590388,
"number_texts_intersect_with_train": 0,
"min_text_length": 558,
"average_text_length": 737.985,
"max_text_length": 1636,
"unique_text": 800,
"unique_labels": 7,
"labels": {
"6": {
"count": 86
},
"1": {
"count": 130
},
"0": {
"count": 239
},
"5": {
"count": 89
},
"3": {
"count": 103
},
"4": {
"count": 66
},
"2": {
"count": 87
}
}
},
"mui": {
"num_samples": 400,
"number_of_characters": 322255,
"number_texts_intersect_with_train": 0,
"min_text_length": 590,
"average_text_length": 805.6375,
"max_text_length": 1352,
"unique_text": 400,
"unique_labels": 7,
"labels": {
"0": {
"count": 117
},
"3": {
"count": 58
},
"4": {
"count": 61
},
"2": {
"count": 57
},
"5": {
"count": 58
},
"6": {
"count": 18
},
"1": {
"count": 31
}
}
},
"rej": {
"num_samples": 300,
"number_of_characters": 218191,
"number_texts_intersect_with_train": 0,
"min_text_length": 520,
"average_text_length": 727.3033333333333,
"max_text_length": 1187,
"unique_text": 300,
"unique_labels": 7,
"labels": {
"3": {
"count": 60
},
"4": {
"count": 26
},
"2": {
"count": 62
},
"0": {
"count": 59
},
"6": {
"count": 26
},
"1": {
"count": 35
},
"5": {
"count": 32
}
}
},
"sun": {
"num_samples": 800,
"number_of_characters": 610126,
"number_texts_intersect_with_train": 0,
"min_text_length": 564,
"average_text_length": 762.6575,
"max_text_length": 1842,
"unique_text": 800,
"unique_labels": 7,
"labels": {
"3": {
"count": 105
},
"6": {
"count": 92
},
"4": {
"count": 88
},
"5": {
"count": 104
},
"0": {
"count": 209
},
"2": {
"count": 97
},
"1": {
"count": 105
}
}
}
}
},
"train": {
"num_samples": 13963,
"number_of_characters": 10210343,
"number_texts_intersect_with_train": null,
"min_text_length": 467,
"average_text_length": 731.2427845018979,
"max_text_length": 2156,
"unique_text": 13959,
"unique_labels": 7,
"labels": {
"6": {
"count": 1343
},
"3": {
"count": 2070
},
"5": {
"count": 1686
},
"4": {
"count": 1648
},
"0": {
"count": 3609
},
"1": {
"count": 1730
},
"2": {
"count": 1877
}
},
"hf_subset_descriptive_stats": {
"btk": {
"num_samples": 1149,
"number_of_characters": 785657,
"number_texts_intersect_with_train": null,
"min_text_length": 467,
"average_text_length": 683.7745865970409,
"max_text_length": 1807,
"unique_text": 1149,
"unique_labels": 7,
"labels": {
"6": {
"count": 107
},
"3": {
"count": 186
},
"5": {
"count": 145
},
"4": {
"count": 141
},
"0": {
"count": 259
},
"1": {
"count": 155
},
"2": {
"count": 156
}
}
},
"bew": {
"num_samples": 2698,
"number_of_characters": 2120349,
"number_texts_intersect_with_train": null,
"min_text_length": 535,
"average_text_length": 785.896590066716,
"max_text_length": 1715,
"unique_text": 2694,
"unique_labels": 7,
"labels": {
"3": {
"count": 319
},
"5": {
"count": 279
},
"6": {
"count": 307
},
"0": {
"count": 744
},
"1": {
"count": 399
},
"2": {
"count": 347
},
"4": {
"count": 303
}
}
},
"bug": {
"num_samples": 87,
"number_of_characters": 66895,
"number_texts_intersect_with_train": null,
"min_text_length": 622,
"average_text_length": 768.9080459770115,
"max_text_length": 1150,
"unique_text": 87,
"unique_labels": 7,
"labels": {
"1": {
"count": 11
},
"5": {
"count": 7
},
"0": {
"count": 25
},
"2": {
"count": 8
},
"3": {
"count": 21
},
"4": {
"count": 11
},
"6": {
"count": 4
}
}
},
"jav": {
"num_samples": 2800,
"number_of_characters": 1918633,
"number_texts_intersect_with_train": null,
"min_text_length": 562,
"average_text_length": 685.2260714285715,
"max_text_length": 1405,
"unique_text": 2800,
"unique_labels": 7,
"labels": {
"5": {
"count": 348
},
"1": {
"count": 340
},
"0": {
"count": 678
},
"3": {
"count": 369
},
"4": {
"count": 362
},
"6": {
"count": 354
},
"2": {
"count": 349
}
}
},
"mad": {
"num_samples": 999,
"number_of_characters": 705416,
"number_texts_intersect_with_train": null,
"min_text_length": 564,
"average_text_length": 706.1221221221222,
"max_text_length": 2156,
"unique_text": 999,
"unique_labels": 7,
"labels": {
"5": {
"count": 100
},
"0": {
"count": 335
},
"2": {
"count": 185
},
"3": {
"count": 205
},
"4": {
"count": 117
},
"1": {
"count": 49
},
"6": {
"count": 8
}
}
},
"mak": {
"num_samples": 1499,
"number_of_characters": 1061229,
"number_texts_intersect_with_train": null,
"min_text_length": 484,
"average_text_length": 707.9579719813208,
"max_text_length": 1168,
"unique_text": 1499,
"unique_labels": 7,
"labels": {
"3": {
"count": 324
},
"4": {
"count": 189
},
"2": {
"count": 237
},
"0": {
"count": 304
},
"1": {
"count": 127
},
"6": {
"count": 81
},
"5": {
"count": 237
}
}
},
"min": {
"num_samples": 1996,
"number_of_characters": 1473263,
"number_texts_intersect_with_train": null,
"min_text_length": 543,
"average_text_length": 738.1077154308617,
"max_text_length": 1321,
"unique_text": 1996,
"unique_labels": 7,
"labels": {
"0": {
"count": 537
},
"6": {
"count": 230
},
"4": {
"count": 178
},
"2": {
"count": 240
},
"1": {
"count": 317
},
"3": {
"count": 301
},
"5": {
"count": 193
}
}
},
"mui": {
"num_samples": 201,
"number_of_characters": 162437,
"number_texts_intersect_with_train": null,
"min_text_length": 623,
"average_text_length": 808.1442786069651,
"max_text_length": 1404,
"unique_text": 201,
"unique_labels": 7,
"labels": {
"0": {
"count": 62
},
"5": {
"count": 32
},
"3": {
"count": 23
},
"1": {
"count": 17
},
"2": {
"count": 31
},
"4": {
"count": 31
},
"6": {
"count": 5
}
}
},
"rej": {
"num_samples": 136,
"number_of_characters": 96411,
"number_texts_intersect_with_train": null,
"min_text_length": 528,
"average_text_length": 708.9044117647059,
"max_text_length": 1138,
"unique_text": 136,
"unique_labels": 7,
"labels": {
"0": {
"count": 29
},
"3": {
"count": 26
},
"2": {
"count": 27
},
"1": {
"count": 12
},
"5": {
"count": 10
},
"4": {
"count": 20
},
"6": {
"count": 12
}
}
},
"sun": {
"num_samples": 2398,
"number_of_characters": 1820053,
"number_texts_intersect_with_train": null,
"min_text_length": 558,
"average_text_length": 758.987906588824,
"max_text_length": 1546,
"unique_text": 2398,
"unique_labels": 7,
"labels": {
"1": {
"count": 303
},
"4": {
"count": 296
},
"0": {
"count": 636
},
"2": {
"count": 297
},
"3": {
"count": 296
},
"6": {
"count": 235
},
"5": {
"count": 335
}
}
}
}
}
}
```
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*