Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
425d7e9
·
verified ·
1 Parent(s): 37ccd6e

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +183 -0
README.md CHANGED
@@ -1,4 +1,19 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: text
@@ -21,4 +36,172 @@ configs:
21
  path: data/train-*
22
  - split: test
23
  path: data/test-*
 
 
 
24
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - dan
6
+ - fao
7
+ - isl
8
+ - nno
9
+ - nob
10
+ - swe
11
+ license: cc-by-sa-3.0
12
+ multilinguality: monolingual
13
+ task_categories:
14
+ - text-classification
15
+ task_ids:
16
+ - language-identification
17
  dataset_info:
18
  features:
19
  - name: text
 
36
  path: data/train-*
37
  - split: test
38
  path: data/test-*
39
+ tags:
40
+ - mteb
41
+ - text
42
  ---
43
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
44
+
45
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
46
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NordicLangClassification</h1>
47
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
48
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
49
+ </div>
50
+
51
+ A dataset for Nordic language identification.
52
+
53
+ | | |
54
+ |---------------|---------------------------------------------|
55
+ | Task category | t2c |
56
+ | Domains | Encyclopaedic |
57
+ | Reference | https://aclanthology.org/2021.vardial-1.8/ |
58
+
59
+
60
+ ## How to evaluate on this task
61
+
62
+ You can evaluate an embedding model on this dataset using the following code:
63
+
64
+ ```python
65
+ import mteb
66
+
67
+ task = mteb.get_tasks(["NordicLangClassification"])
68
+ evaluator = mteb.MTEB(task)
69
+
70
+ model = mteb.get_model(YOUR_MODEL)
71
+ evaluator.run(model)
72
+ ```
73
+
74
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
75
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
76
+
77
+ ## Citation
78
+
79
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
80
+
81
+ ```bibtex
82
+
83
+ @inproceedings{haas-derczynski-2021-discriminating,
84
+ abstract = {Automatic language identification is a challenging problem. Discriminating between closely related languages is especially difficult. This paper presents a machine learning approach for automatic language identification for the Nordic languages, which often suffer miscategorisation by existing state-of-the-art tools. Concretely we will focus on discrimination between six Nordic languages: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokm{\aa}l), Faroese and Icelandic.},
85
+ address = {Kiyv, Ukraine},
86
+ author = {Haas, Ren{\'e} and
87
+ Derczynski, Leon},
88
+ booktitle = {Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects},
89
+ editor = {Zampieri, Marcos and
90
+ Nakov, Preslav and
91
+ Ljube{\v{s}}i{\'c}, Nikola and
92
+ Tiedemann, J{\"o}rg and
93
+ Scherrer, Yves and
94
+ Jauhiainen, Tommi},
95
+ month = apr,
96
+ pages = {67--75},
97
+ publisher = {Association for Computational Linguistics},
98
+ title = {Discriminating Between Similar {N}ordic Languages},
99
+ url = {https://aclanthology.org/2021.vardial-1.8},
100
+ year = {2021},
101
+ }
102
+
103
+
104
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
105
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
106
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
107
+ publisher = {arXiv},
108
+ journal={arXiv preprint arXiv:2502.13595},
109
+ year={2025},
110
+ url={https://arxiv.org/abs/2502.13595},
111
+ doi = {10.48550/arXiv.2502.13595},
112
+ }
113
+
114
+ @article{muennighoff2022mteb,
115
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
116
+ title = {MTEB: Massive Text Embedding Benchmark},
117
+ publisher = {arXiv},
118
+ journal={arXiv preprint arXiv:2210.07316},
119
+ year = {2022}
120
+ url = {https://arxiv.org/abs/2210.07316},
121
+ doi = {10.48550/ARXIV.2210.07316},
122
+ }
123
+ ```
124
+
125
+ # Dataset Statistics
126
+ <details>
127
+ <summary> Dataset Statistics</summary>
128
+
129
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
130
+
131
+ ```python
132
+ import mteb
133
+
134
+ task = mteb.get_task("NordicLangClassification")
135
+
136
+ desc_stats = task.metadata.descriptive_stats
137
+ ```
138
+
139
+ ```json
140
+ {
141
+ "test": {
142
+ "num_samples": 3000,
143
+ "number_of_characters": 234686,
144
+ "number_texts_intersect_with_train": 320,
145
+ "min_text_length": 10,
146
+ "average_text_length": 78.22866666666667,
147
+ "max_text_length": 294,
148
+ "unique_text": 2841,
149
+ "unique_labels": 6,
150
+ "labels": {
151
+ "1": {
152
+ "count": 510
153
+ },
154
+ "5": {
155
+ "count": 480
156
+ },
157
+ "4": {
158
+ "count": 522
159
+ },
160
+ "2": {
161
+ "count": 455
162
+ },
163
+ "0": {
164
+ "count": 532
165
+ },
166
+ "3": {
167
+ "count": 501
168
+ }
169
+ }
170
+ },
171
+ "train": {
172
+ "num_samples": 56985,
173
+ "number_of_characters": 4471932,
174
+ "number_texts_intersect_with_train": null,
175
+ "min_text_length": 9,
176
+ "average_text_length": 78.47559884180048,
177
+ "max_text_length": 294,
178
+ "unique_text": 49950,
179
+ "unique_labels": 6,
180
+ "labels": {
181
+ "2": {
182
+ "count": 9543
183
+ },
184
+ "0": {
185
+ "count": 9462
186
+ },
187
+ "5": {
188
+ "count": 9519
189
+ },
190
+ "1": {
191
+ "count": 9490
192
+ },
193
+ "4": {
194
+ "count": 9477
195
+ },
196
+ "3": {
197
+ "count": 9494
198
+ }
199
+ }
200
+ }
201
+ }
202
+ ```
203
+
204
+ </details>
205
+
206
+ ---
207
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*