Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
e3973b4
·
verified ·
1 Parent(s): 13171e7

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -53,4 +65,132 @@ configs:
53
  data_files:
54
  - split: train
55
  path: queries/train-*
 
 
 
56
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - eng
6
+ license: cc-by-4.0
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/nq
10
+ task_categories:
11
+ - text-retrieval
12
+ task_ids:
13
+ - multiple-choice-qa
14
  dataset_info:
15
  - config_name: corpus
16
  features:
 
65
  data_files:
66
  - split: train
67
  path: queries/train-*
68
+ tags:
69
+ - mteb
70
+ - text
71
  ---
72
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
73
+
74
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
75
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NanoNQRetrieval</h1>
76
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
77
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
78
+ </div>
79
+
80
+ NanoNQ is a smaller subset of a dataset which contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question.
81
+
82
+ | | |
83
+ |---------------|---------------------------------------------|
84
+ | Task category | t2t |
85
+ | Domains | Academic, Web |
86
+ | Reference | https://ai.google.com/research/NaturalQuestions |
87
+
88
+
89
+ ## How to evaluate on this task
90
+
91
+ You can evaluate an embedding model on this dataset using the following code:
92
+
93
+ ```python
94
+ import mteb
95
+
96
+ task = mteb.get_tasks(["NanoNQRetrieval"])
97
+ evaluator = mteb.MTEB(task)
98
+
99
+ model = mteb.get_model(YOUR_MODEL)
100
+ evaluator.run(model)
101
+ ```
102
+
103
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
104
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
105
+
106
+ ## Citation
107
+
108
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
109
+
110
+ ```bibtex
111
+
112
+ @article{47761,
113
+ author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
114
+ and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee
115
+ and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le
116
+ and Slav Petrov},
117
+ journal = {Transactions of the Association of Computational
118
+ Linguistics},
119
+ title = {Natural Questions: a Benchmark for Question Answering Research},
120
+ year = {2019},
121
+ }
122
+
123
+
124
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
125
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
126
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
127
+ publisher = {arXiv},
128
+ journal={arXiv preprint arXiv:2502.13595},
129
+ year={2025},
130
+ url={https://arxiv.org/abs/2502.13595},
131
+ doi = {10.48550/arXiv.2502.13595},
132
+ }
133
+
134
+ @article{muennighoff2022mteb,
135
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
136
+ title = {MTEB: Massive Text Embedding Benchmark},
137
+ publisher = {arXiv},
138
+ journal={arXiv preprint arXiv:2210.07316},
139
+ year = {2022}
140
+ url = {https://arxiv.org/abs/2210.07316},
141
+ doi = {10.48550/ARXIV.2210.07316},
142
+ }
143
+ ```
144
+
145
+ # Dataset Statistics
146
+ <details>
147
+ <summary> Dataset Statistics</summary>
148
+
149
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
150
+
151
+ ```python
152
+ import mteb
153
+
154
+ task = mteb.get_task("NanoNQRetrieval")
155
+
156
+ desc_stats = task.metadata.descriptive_stats
157
+ ```
158
+
159
+ ```json
160
+ {
161
+ "train": {
162
+ "num_samples": 5085,
163
+ "number_of_characters": 2648727,
164
+ "num_documents": 5035,
165
+ "min_document_length": 1,
166
+ "average_document_length": 525.5958291956306,
167
+ "max_document_length": 6138,
168
+ "unique_documents": 5035,
169
+ "num_queries": 50,
170
+ "min_query_length": 32,
171
+ "average_query_length": 47.04,
172
+ "max_query_length": 83,
173
+ "unique_queries": 50,
174
+ "none_queries": 0,
175
+ "num_relevant_docs": 57,
176
+ "min_relevant_docs_per_query": 1,
177
+ "average_relevant_docs_per_query": 1.14,
178
+ "max_relevant_docs_per_query": 2,
179
+ "unique_relevant_docs": 57,
180
+ "num_instructions": null,
181
+ "min_instruction_length": null,
182
+ "average_instruction_length": null,
183
+ "max_instruction_length": null,
184
+ "unique_instructions": null,
185
+ "num_top_ranked": null,
186
+ "min_top_ranked_per_query": null,
187
+ "average_top_ranked_per_query": null,
188
+ "max_top_ranked_per_query": null
189
+ }
190
+ }
191
+ ```
192
+
193
+ </details>
194
+
195
+ ---
196
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*