Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
5a5aa0c
·
verified ·
1 Parent(s): 807d44d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +149 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -53,4 +65,141 @@ configs:
53
  data_files:
54
  - split: train
55
  path: queries/train-*
 
 
 
56
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - eng
6
+ license: cc-by-4.0
7
+ multilinguality: monolingual
8
+ source_datasets:
9
+ - mteb/msmarco
10
+ task_categories:
11
+ - text-retrieval
12
+ task_ids:
13
+ - multiple-choice-qa
14
  dataset_info:
15
  - config_name: corpus
16
  features:
 
65
  data_files:
66
  - split: train
67
  path: queries/train-*
68
+ tags:
69
+ - mteb
70
+ - text
71
  ---
72
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
73
+
74
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
75
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NanoMSMARCORetrieval</h1>
76
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
77
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
78
+ </div>
79
+
80
+ NanoMSMARCORetrieval is a smaller subset of MS MARCO, a collection of datasets focused on deep learning in search.
81
+
82
+ | | |
83
+ |---------------|---------------------------------------------|
84
+ | Task category | t2t |
85
+ | Domains | Web |
86
+ | Reference | https://microsoft.github.io/msmarco/ |
87
+
88
+
89
+ ## How to evaluate on this task
90
+
91
+ You can evaluate an embedding model on this dataset using the following code:
92
+
93
+ ```python
94
+ import mteb
95
+
96
+ task = mteb.get_tasks(["NanoMSMARCORetrieval"])
97
+ evaluator = mteb.MTEB(task)
98
+
99
+ model = mteb.get_model(YOUR_MODEL)
100
+ evaluator.run(model)
101
+ ```
102
+
103
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
104
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
105
+
106
+ ## Citation
107
+
108
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
109
+
110
+ ```bibtex
111
+
112
+ @article{DBLP:journals/corr/NguyenRSGTMD16,
113
+ archiveprefix = {arXiv},
114
+ author = {Tri Nguyen and
115
+ Mir Rosenberg and
116
+ Xia Song and
117
+ Jianfeng Gao and
118
+ Saurabh Tiwary and
119
+ Rangan Majumder and
120
+ Li Deng},
121
+ bibsource = {dblp computer science bibliography, https://dblp.org},
122
+ biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},
123
+ eprint = {1611.09268},
124
+ journal = {CoRR},
125
+ timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},
126
+ title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},
127
+ url = {http://arxiv.org/abs/1611.09268},
128
+ volume = {abs/1611.09268},
129
+ year = {2016},
130
+ }
131
+
132
+
133
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
134
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
135
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
136
+ publisher = {arXiv},
137
+ journal={arXiv preprint arXiv:2502.13595},
138
+ year={2025},
139
+ url={https://arxiv.org/abs/2502.13595},
140
+ doi = {10.48550/arXiv.2502.13595},
141
+ }
142
+
143
+ @article{muennighoff2022mteb,
144
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
145
+ title = {MTEB: Massive Text Embedding Benchmark},
146
+ publisher = {arXiv},
147
+ journal={arXiv preprint arXiv:2210.07316},
148
+ year = {2022}
149
+ url = {https://arxiv.org/abs/2210.07316},
150
+ doi = {10.48550/ARXIV.2210.07316},
151
+ }
152
+ ```
153
+
154
+ # Dataset Statistics
155
+ <details>
156
+ <summary> Dataset Statistics</summary>
157
+
158
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
159
+
160
+ ```python
161
+ import mteb
162
+
163
+ task = mteb.get_task("NanoMSMARCORetrieval")
164
+
165
+ desc_stats = task.metadata.descriptive_stats
166
+ ```
167
+
168
+ ```json
169
+ {
170
+ "train": {
171
+ "num_samples": 5093,
172
+ "number_of_characters": 1666607,
173
+ "num_documents": 5043,
174
+ "min_document_length": 32,
175
+ "average_document_length": 330.159825500694,
176
+ "max_document_length": 990,
177
+ "unique_documents": 5043,
178
+ "num_queries": 50,
179
+ "min_query_length": 13,
180
+ "average_query_length": 32.22,
181
+ "max_query_length": 101,
182
+ "unique_queries": 50,
183
+ "none_queries": 0,
184
+ "num_relevant_docs": 50,
185
+ "min_relevant_docs_per_query": 1,
186
+ "average_relevant_docs_per_query": 1.0,
187
+ "max_relevant_docs_per_query": 1,
188
+ "unique_relevant_docs": 50,
189
+ "num_instructions": null,
190
+ "min_instruction_length": null,
191
+ "average_instruction_length": null,
192
+ "max_instruction_length": null,
193
+ "unique_instructions": null,
194
+ "num_top_ranked": null,
195
+ "min_top_ranked_per_query": null,
196
+ "average_top_ranked_per_query": null,
197
+ "max_top_ranked_per_query": null
198
+ }
199
+ }
200
+ ```
201
+
202
+ </details>
203
+
204
+ ---
205
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*