--- annotations_creators: - expert-annotated language: - hau - ibo - pcm - yor license: cc-by-4.0 multilinguality: multilingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: - config_name: hau features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1377534 num_examples: 14172 - name: test num_bytes: 420643 num_examples: 5303 download_size: 1111315 dataset_size: 1798177 - config_name: ibo features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 888336 num_examples: 10192 - name: test num_bytes: 230041 num_examples: 3682 download_size: 687283 dataset_size: 1118377 - config_name: pcm features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 657515 num_examples: 5121 - name: test num_bytes: 426214 num_examples: 4154 download_size: 678909 dataset_size: 1083729 - config_name: yor features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1341405 num_examples: 8522 - name: test num_bytes: 565182 num_examples: 4515 download_size: 1213252 dataset_size: 1906587 configs: - config_name: hau data_files: - split: train path: hau/train-* - split: test path: hau/test-* - config_name: ibo data_files: - split: train path: ibo/train-* - split: test path: ibo/test-* - config_name: pcm data_files: - split: train path: pcm/train-* - split: test path: pcm/test-* - config_name: yor data_files: - split: train path: yor/train-* - split: test path: yor/test-* tags: - mteb - text ---
NaijaSenti is the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria — Hausa, Igbo, Nigerian-Pidgin, and Yorùbá — consisting of around 30,000 annotated tweets per language, including a significant fraction of code-mixed tweets. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Social, Written | | Reference | https://github.com/hausanlp/NaijaSenti | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["NaijaSenti"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{muhammad-etal-2022-naijasenti, address = {Marseille, France}, author = {Muhammad, Shamsuddeen Hassan and Adelani, David Ifeoluwa and Ruder, Sebastian and Ahmad, Ibrahim Sa{'}id and Abdulmumin, Idris and Bello, Bello Shehu and Choudhury, Monojit and Emezue, Chris Chinenye and Abdullahi, Saheed Salahudeen and Aremu, Anuoluwapo and Jorge, Al{\'\i}pio and Brazdil, Pavel}, booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference}, month = jun, pages = {590--602}, publisher = {European Language Resources Association}, title = {{N}aija{S}enti: A {N}igerian {T}witter Sentiment Corpus for Multilingual Sentiment Analysis}, url = {https://aclanthology.org/2022.lrec-1.63}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics