mstz commited on
Commit
9133735
·
1 Parent(s): 993e316

updated to datasets 4.*

Browse files
README.md CHANGED
@@ -1,3 +1,53 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
+ configs:
3
+ - config_name: segment
4
+ data_files:
5
+ - path: segment/train.csv
6
+ split: train
7
+ default: true
8
+ - config_name: brickface
9
+ data_files:
10
+ - path: brickface/train.csv
11
+ split: train
12
+ default: false
13
+ - config_name: sky
14
+ data_files:
15
+ - path: sky/train.csv
16
+ split: train
17
+ default: false
18
+ - config_name: foliage
19
+ data_files:
20
+ - path: foliage/train.csv
21
+ split: train
22
+ default: false
23
+ - config_name: cement
24
+ data_files:
25
+ - path: cement/train.csv
26
+ split: train
27
+ default: false
28
+ - config_name: window
29
+ data_files:
30
+ - path: window/train.csv
31
+ split: train
32
+ default: false
33
+ - config_name: path
34
+ data_files:
35
+ - path: path/train.csv
36
+ split: train
37
+ default: false
38
+ - config_name: grass
39
+ data_files:
40
+ - path: grass/train.csv
41
+ split: train
42
+ default: false
43
+ language: en
44
  license: cc-by-4.0
45
+ pretty_name: Segment
46
+ size_categories: 1M<n<10M
47
+ tags:
48
+ - tabular_classification
49
+ - binary_classification
50
+ - multiclass_classification
51
+ task_categories:
52
+ - tabular-classification
53
  ---
brickface/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
cement/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
foliage/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
grass/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
path/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
segment.csv DELETED
The diff for this file is too large to render. See raw diff
 
segment.py DELETED
@@ -1,277 +0,0 @@
1
- """Segment Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
-
13
- _ENCODING_DICS = {}
14
-
15
- DESCRIPTION = "Segment dataset."
16
- _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
17
- _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
18
- _CITATION = """
19
- @misc{misc_statlog_(image_segmentation)_147,
20
- title = {{Statlog (Image Segmentation)}},
21
- year = {1990},
22
- howpublished = {UCI Machine Learning Repository},
23
- note = {{DOI}: \\url{10.24432/C5P01G}}
24
- }
25
- """
26
-
27
- # Dataset info
28
- urls_per_split = {
29
- "train": "https://huggingface.co/datasets/mstz/segment/raw/main/segment.csv"
30
- }
31
- features_types_per_config = {
32
- "segment": {
33
- "region_centroid_col": datasets.Value("float64"),
34
- "region_centroid_row": datasets.Value("float64"),
35
- "region_centroid_pixel_count": datasets.Value("float64"),
36
- "short_line_density": datasets.Value("float64"),
37
- "vedge_mean": datasets.Value("float64"),
38
- "vedge_std": datasets.Value("float64"),
39
- "hedge_mean": datasets.Value("float64"),
40
- "hedge_std": datasets.Value("float64"),
41
- "intensity_mean": datasets.Value("float64"),
42
- "rawred_mean": datasets.Value("float64"),
43
- "rawblue_mean": datasets.Value("float64"),
44
- "rawgreen_mean": datasets.Value("float64"),
45
- "exred_mean": datasets.Value("float64"),
46
- "exblue_mean": datasets.Value("float64"),
47
- "exgreen_mean": datasets.Value("float64"),
48
- "value_mean": datasets.Value("float64"),
49
- "saturation_mean": datasets.Value("float64"),
50
- "hue_mean": datasets.Value("float64"),
51
- "class": datasets.ClassLabel(num_classes=7,
52
- names=("brickface", "sky", "foliage", "cement", "window", "path", "grass")),
53
- },
54
- "brickface": {
55
- "region_centroid_col": datasets.Value("float64"),
56
- "region_centroid_row": datasets.Value("float64"),
57
- "region_centroid_pixel_count": datasets.Value("float64"),
58
- "short_line_density": datasets.Value("float64"),
59
- "vedge_mean": datasets.Value("float64"),
60
- "vedge_std": datasets.Value("float64"),
61
- "hedge_mean": datasets.Value("float64"),
62
- "hedge_std": datasets.Value("float64"),
63
- "intensity_mean": datasets.Value("float64"),
64
- "rawred_mean": datasets.Value("float64"),
65
- "rawblue_mean": datasets.Value("float64"),
66
- "rawgreen_mean": datasets.Value("float64"),
67
- "exred_mean": datasets.Value("float64"),
68
- "exblue_mean": datasets.Value("float64"),
69
- "exgreen_mean": datasets.Value("float64"),
70
- "value_mean": datasets.Value("float64"),
71
- "saturation_mean": datasets.Value("float64"),
72
- "hue_mean": datasets.Value("float64"),
73
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
74
- },
75
- "sky": {
76
- "region_centroid_col": datasets.Value("float64"),
77
- "region_centroid_row": datasets.Value("float64"),
78
- "region_centroid_pixel_count": datasets.Value("float64"),
79
- "short_line_density": datasets.Value("float64"),
80
- "vedge_mean": datasets.Value("float64"),
81
- "vedge_std": datasets.Value("float64"),
82
- "hedge_mean": datasets.Value("float64"),
83
- "hedge_std": datasets.Value("float64"),
84
- "intensity_mean": datasets.Value("float64"),
85
- "rawred_mean": datasets.Value("float64"),
86
- "rawblue_mean": datasets.Value("float64"),
87
- "rawgreen_mean": datasets.Value("float64"),
88
- "exred_mean": datasets.Value("float64"),
89
- "exblue_mean": datasets.Value("float64"),
90
- "exgreen_mean": datasets.Value("float64"),
91
- "value_mean": datasets.Value("float64"),
92
- "saturation_mean": datasets.Value("float64"),
93
- "hue_mean": datasets.Value("float64"),
94
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
95
- },
96
- "foliage": {
97
- "region_centroid_col": datasets.Value("float64"),
98
- "region_centroid_row": datasets.Value("float64"),
99
- "region_centroid_pixel_count": datasets.Value("float64"),
100
- "short_line_density": datasets.Value("float64"),
101
- "vedge_mean": datasets.Value("float64"),
102
- "vedge_std": datasets.Value("float64"),
103
- "hedge_mean": datasets.Value("float64"),
104
- "hedge_std": datasets.Value("float64"),
105
- "intensity_mean": datasets.Value("float64"),
106
- "rawred_mean": datasets.Value("float64"),
107
- "rawblue_mean": datasets.Value("float64"),
108
- "rawgreen_mean": datasets.Value("float64"),
109
- "exred_mean": datasets.Value("float64"),
110
- "exblue_mean": datasets.Value("float64"),
111
- "exgreen_mean": datasets.Value("float64"),
112
- "value_mean": datasets.Value("float64"),
113
- "saturation_mean": datasets.Value("float64"),
114
- "hue_mean": datasets.Value("float64"),
115
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
116
- },
117
- "cement": {
118
- "region_centroid_col": datasets.Value("float64"),
119
- "region_centroid_row": datasets.Value("float64"),
120
- "region_centroid_pixel_count": datasets.Value("float64"),
121
- "short_line_density": datasets.Value("float64"),
122
- "vedge_mean": datasets.Value("float64"),
123
- "vedge_std": datasets.Value("float64"),
124
- "hedge_mean": datasets.Value("float64"),
125
- "hedge_std": datasets.Value("float64"),
126
- "intensity_mean": datasets.Value("float64"),
127
- "rawred_mean": datasets.Value("float64"),
128
- "rawblue_mean": datasets.Value("float64"),
129
- "rawgreen_mean": datasets.Value("float64"),
130
- "exred_mean": datasets.Value("float64"),
131
- "exblue_mean": datasets.Value("float64"),
132
- "exgreen_mean": datasets.Value("float64"),
133
- "value_mean": datasets.Value("float64"),
134
- "saturation_mean": datasets.Value("float64"),
135
- "hue_mean": datasets.Value("float64"),
136
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
137
- },
138
- "window": {
139
- "region_centroid_col": datasets.Value("float64"),
140
- "region_centroid_row": datasets.Value("float64"),
141
- "region_centroid_pixel_count": datasets.Value("float64"),
142
- "short_line_density": datasets.Value("float64"),
143
- "vedge_mean": datasets.Value("float64"),
144
- "vedge_std": datasets.Value("float64"),
145
- "hedge_mean": datasets.Value("float64"),
146
- "hedge_std": datasets.Value("float64"),
147
- "intensity_mean": datasets.Value("float64"),
148
- "rawred_mean": datasets.Value("float64"),
149
- "rawblue_mean": datasets.Value("float64"),
150
- "rawgreen_mean": datasets.Value("float64"),
151
- "exred_mean": datasets.Value("float64"),
152
- "exblue_mean": datasets.Value("float64"),
153
- "exgreen_mean": datasets.Value("float64"),
154
- "value_mean": datasets.Value("float64"),
155
- "saturation_mean": datasets.Value("float64"),
156
- "hue_mean": datasets.Value("float64"),
157
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
158
- },
159
- "path": {
160
- "region_centroid_col": datasets.Value("float64"),
161
- "region_centroid_row": datasets.Value("float64"),
162
- "region_centroid_pixel_count": datasets.Value("float64"),
163
- "short_line_density": datasets.Value("float64"),
164
- "vedge_mean": datasets.Value("float64"),
165
- "vedge_std": datasets.Value("float64"),
166
- "hedge_mean": datasets.Value("float64"),
167
- "hedge_std": datasets.Value("float64"),
168
- "intensity_mean": datasets.Value("float64"),
169
- "rawred_mean": datasets.Value("float64"),
170
- "rawblue_mean": datasets.Value("float64"),
171
- "rawgreen_mean": datasets.Value("float64"),
172
- "exred_mean": datasets.Value("float64"),
173
- "exblue_mean": datasets.Value("float64"),
174
- "exgreen_mean": datasets.Value("float64"),
175
- "value_mean": datasets.Value("float64"),
176
- "saturation_mean": datasets.Value("float64"),
177
- "hue_mean": datasets.Value("float64"),
178
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
179
- },
180
- "grass": {
181
- "region_centroid_col": datasets.Value("float64"),
182
- "region_centroid_row": datasets.Value("float64"),
183
- "region_centroid_pixel_count": datasets.Value("float64"),
184
- "short_line_density": datasets.Value("float64"),
185
- "vedge_mean": datasets.Value("float64"),
186
- "vedge_std": datasets.Value("float64"),
187
- "hedge_mean": datasets.Value("float64"),
188
- "hedge_std": datasets.Value("float64"),
189
- "intensity_mean": datasets.Value("float64"),
190
- "rawred_mean": datasets.Value("float64"),
191
- "rawblue_mean": datasets.Value("float64"),
192
- "rawgreen_mean": datasets.Value("float64"),
193
- "exred_mean": datasets.Value("float64"),
194
- "exblue_mean": datasets.Value("float64"),
195
- "exgreen_mean": datasets.Value("float64"),
196
- "value_mean": datasets.Value("float64"),
197
- "saturation_mean": datasets.Value("float64"),
198
- "hue_mean": datasets.Value("float64"),
199
- "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
200
- },
201
- }
202
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
203
-
204
-
205
- class SegmentConfig(datasets.BuilderConfig):
206
- def __init__(self, **kwargs):
207
- super(SegmentConfig, self).__init__(version=VERSION, **kwargs)
208
- self.features = features_per_config[kwargs["name"]]
209
-
210
-
211
- class Segment(datasets.GeneratorBasedBuilder):
212
- # dataset versions
213
- DEFAULT_CONFIG = "segment"
214
- BUILDER_CONFIGS = [
215
- SegmentConfig(name="segment", description="Segment for multiclass classification."),
216
- SegmentConfig(name="brickface", description="Segment for binary classification."),
217
- SegmentConfig(name="sky", description="Segment for binary classification."),
218
- SegmentConfig(name="foliage", description="Segment for binary classification."),
219
- SegmentConfig(name="cement", description="Segment for binary classification."),
220
- SegmentConfig(name="window", description="Segment for binary classification."),
221
- SegmentConfig(name="path", description="Segment for binary classification."),
222
- SegmentConfig(name="grass", description="Segment for binary classification.")
223
- ]
224
-
225
-
226
- def _info(self):
227
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
228
- features=features_per_config[self.config.name])
229
-
230
- return info
231
-
232
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
233
- downloads = dl_manager.download_and_extract(urls_per_split)
234
-
235
- return [
236
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
237
- ]
238
-
239
- def _generate_examples(self, filepath: str):
240
- data = pandas.read_csv(filepath)
241
- data = self.preprocess(data)
242
-
243
- for row_id, row in data.iterrows():
244
- data_row = dict(row)
245
-
246
- yield row_id, data_row
247
-
248
- def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
249
- data["class"] = data["class"].apply(lambda x: x - 1)
250
- data = data.reset_index()
251
- data.drop("index", axis="columns", inplace=True)
252
-
253
- if self.config.name == "brickface":
254
- data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
255
- if self.config.name == "sky":
256
- data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
257
- if self.config.name == "foliage":
258
- data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
259
- if self.config.name == "cement":
260
- data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
261
- if self.config.name == "window":
262
- data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
263
- if self.config.name == "path":
264
- data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
265
- if self.config.name == "grass":
266
- data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
267
-
268
- for feature in _ENCODING_DICS:
269
- encoding_function = partial(self.encode, feature)
270
- data.loc[:, feature] = data[feature].apply(encoding_function)
271
-
272
- return data[list(features_types_per_config[self.config.name].keys())]
273
-
274
- def encode(self, feature, value):
275
- if feature in _ENCODING_DICS:
276
- return _ENCODING_DICS[feature][value]
277
- raise ValueError(f"Unknown feature: {feature}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
segment/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
sky/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
window/train.csv ADDED
The diff for this file is too large to render. See raw diff