Datasets:
Tasks:
Tabular Classification
Modalities:
Tabular
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
updated to datasets 4.*
Browse files- README.md +50 -0
- brickface/train.csv +0 -0
- cement/train.csv +0 -0
- foliage/train.csv +0 -0
- grass/train.csv +0 -0
- path/train.csv +0 -0
- segment.csv +0 -0
- segment.py +0 -277
- segment/train.csv +0 -0
- sky/train.csv +0 -0
- window/train.csv +0 -0
README.md
CHANGED
@@ -1,3 +1,53 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
configs:
|
3 |
+
- config_name: segment
|
4 |
+
data_files:
|
5 |
+
- path: segment/train.csv
|
6 |
+
split: train
|
7 |
+
default: true
|
8 |
+
- config_name: brickface
|
9 |
+
data_files:
|
10 |
+
- path: brickface/train.csv
|
11 |
+
split: train
|
12 |
+
default: false
|
13 |
+
- config_name: sky
|
14 |
+
data_files:
|
15 |
+
- path: sky/train.csv
|
16 |
+
split: train
|
17 |
+
default: false
|
18 |
+
- config_name: foliage
|
19 |
+
data_files:
|
20 |
+
- path: foliage/train.csv
|
21 |
+
split: train
|
22 |
+
default: false
|
23 |
+
- config_name: cement
|
24 |
+
data_files:
|
25 |
+
- path: cement/train.csv
|
26 |
+
split: train
|
27 |
+
default: false
|
28 |
+
- config_name: window
|
29 |
+
data_files:
|
30 |
+
- path: window/train.csv
|
31 |
+
split: train
|
32 |
+
default: false
|
33 |
+
- config_name: path
|
34 |
+
data_files:
|
35 |
+
- path: path/train.csv
|
36 |
+
split: train
|
37 |
+
default: false
|
38 |
+
- config_name: grass
|
39 |
+
data_files:
|
40 |
+
- path: grass/train.csv
|
41 |
+
split: train
|
42 |
+
default: false
|
43 |
+
language: en
|
44 |
license: cc-by-4.0
|
45 |
+
pretty_name: Segment
|
46 |
+
size_categories: 1M<n<10M
|
47 |
+
tags:
|
48 |
+
- tabular_classification
|
49 |
+
- binary_classification
|
50 |
+
- multiclass_classification
|
51 |
+
task_categories:
|
52 |
+
- tabular-classification
|
53 |
---
|
brickface/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cement/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
foliage/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
grass/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
path/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
segment.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
segment.py
DELETED
@@ -1,277 +0,0 @@
|
|
1 |
-
"""Segment Dataset"""
|
2 |
-
|
3 |
-
from typing import List
|
4 |
-
from functools import partial
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
import pandas
|
9 |
-
|
10 |
-
|
11 |
-
VERSION = datasets.Version("1.0.0")
|
12 |
-
|
13 |
-
_ENCODING_DICS = {}
|
14 |
-
|
15 |
-
DESCRIPTION = "Segment dataset."
|
16 |
-
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
|
17 |
-
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
|
18 |
-
_CITATION = """
|
19 |
-
@misc{misc_statlog_(image_segmentation)_147,
|
20 |
-
title = {{Statlog (Image Segmentation)}},
|
21 |
-
year = {1990},
|
22 |
-
howpublished = {UCI Machine Learning Repository},
|
23 |
-
note = {{DOI}: \\url{10.24432/C5P01G}}
|
24 |
-
}
|
25 |
-
"""
|
26 |
-
|
27 |
-
# Dataset info
|
28 |
-
urls_per_split = {
|
29 |
-
"train": "https://huggingface.co/datasets/mstz/segment/raw/main/segment.csv"
|
30 |
-
}
|
31 |
-
features_types_per_config = {
|
32 |
-
"segment": {
|
33 |
-
"region_centroid_col": datasets.Value("float64"),
|
34 |
-
"region_centroid_row": datasets.Value("float64"),
|
35 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
36 |
-
"short_line_density": datasets.Value("float64"),
|
37 |
-
"vedge_mean": datasets.Value("float64"),
|
38 |
-
"vedge_std": datasets.Value("float64"),
|
39 |
-
"hedge_mean": datasets.Value("float64"),
|
40 |
-
"hedge_std": datasets.Value("float64"),
|
41 |
-
"intensity_mean": datasets.Value("float64"),
|
42 |
-
"rawred_mean": datasets.Value("float64"),
|
43 |
-
"rawblue_mean": datasets.Value("float64"),
|
44 |
-
"rawgreen_mean": datasets.Value("float64"),
|
45 |
-
"exred_mean": datasets.Value("float64"),
|
46 |
-
"exblue_mean": datasets.Value("float64"),
|
47 |
-
"exgreen_mean": datasets.Value("float64"),
|
48 |
-
"value_mean": datasets.Value("float64"),
|
49 |
-
"saturation_mean": datasets.Value("float64"),
|
50 |
-
"hue_mean": datasets.Value("float64"),
|
51 |
-
"class": datasets.ClassLabel(num_classes=7,
|
52 |
-
names=("brickface", "sky", "foliage", "cement", "window", "path", "grass")),
|
53 |
-
},
|
54 |
-
"brickface": {
|
55 |
-
"region_centroid_col": datasets.Value("float64"),
|
56 |
-
"region_centroid_row": datasets.Value("float64"),
|
57 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
58 |
-
"short_line_density": datasets.Value("float64"),
|
59 |
-
"vedge_mean": datasets.Value("float64"),
|
60 |
-
"vedge_std": datasets.Value("float64"),
|
61 |
-
"hedge_mean": datasets.Value("float64"),
|
62 |
-
"hedge_std": datasets.Value("float64"),
|
63 |
-
"intensity_mean": datasets.Value("float64"),
|
64 |
-
"rawred_mean": datasets.Value("float64"),
|
65 |
-
"rawblue_mean": datasets.Value("float64"),
|
66 |
-
"rawgreen_mean": datasets.Value("float64"),
|
67 |
-
"exred_mean": datasets.Value("float64"),
|
68 |
-
"exblue_mean": datasets.Value("float64"),
|
69 |
-
"exgreen_mean": datasets.Value("float64"),
|
70 |
-
"value_mean": datasets.Value("float64"),
|
71 |
-
"saturation_mean": datasets.Value("float64"),
|
72 |
-
"hue_mean": datasets.Value("float64"),
|
73 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
74 |
-
},
|
75 |
-
"sky": {
|
76 |
-
"region_centroid_col": datasets.Value("float64"),
|
77 |
-
"region_centroid_row": datasets.Value("float64"),
|
78 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
79 |
-
"short_line_density": datasets.Value("float64"),
|
80 |
-
"vedge_mean": datasets.Value("float64"),
|
81 |
-
"vedge_std": datasets.Value("float64"),
|
82 |
-
"hedge_mean": datasets.Value("float64"),
|
83 |
-
"hedge_std": datasets.Value("float64"),
|
84 |
-
"intensity_mean": datasets.Value("float64"),
|
85 |
-
"rawred_mean": datasets.Value("float64"),
|
86 |
-
"rawblue_mean": datasets.Value("float64"),
|
87 |
-
"rawgreen_mean": datasets.Value("float64"),
|
88 |
-
"exred_mean": datasets.Value("float64"),
|
89 |
-
"exblue_mean": datasets.Value("float64"),
|
90 |
-
"exgreen_mean": datasets.Value("float64"),
|
91 |
-
"value_mean": datasets.Value("float64"),
|
92 |
-
"saturation_mean": datasets.Value("float64"),
|
93 |
-
"hue_mean": datasets.Value("float64"),
|
94 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
95 |
-
},
|
96 |
-
"foliage": {
|
97 |
-
"region_centroid_col": datasets.Value("float64"),
|
98 |
-
"region_centroid_row": datasets.Value("float64"),
|
99 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
100 |
-
"short_line_density": datasets.Value("float64"),
|
101 |
-
"vedge_mean": datasets.Value("float64"),
|
102 |
-
"vedge_std": datasets.Value("float64"),
|
103 |
-
"hedge_mean": datasets.Value("float64"),
|
104 |
-
"hedge_std": datasets.Value("float64"),
|
105 |
-
"intensity_mean": datasets.Value("float64"),
|
106 |
-
"rawred_mean": datasets.Value("float64"),
|
107 |
-
"rawblue_mean": datasets.Value("float64"),
|
108 |
-
"rawgreen_mean": datasets.Value("float64"),
|
109 |
-
"exred_mean": datasets.Value("float64"),
|
110 |
-
"exblue_mean": datasets.Value("float64"),
|
111 |
-
"exgreen_mean": datasets.Value("float64"),
|
112 |
-
"value_mean": datasets.Value("float64"),
|
113 |
-
"saturation_mean": datasets.Value("float64"),
|
114 |
-
"hue_mean": datasets.Value("float64"),
|
115 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
116 |
-
},
|
117 |
-
"cement": {
|
118 |
-
"region_centroid_col": datasets.Value("float64"),
|
119 |
-
"region_centroid_row": datasets.Value("float64"),
|
120 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
121 |
-
"short_line_density": datasets.Value("float64"),
|
122 |
-
"vedge_mean": datasets.Value("float64"),
|
123 |
-
"vedge_std": datasets.Value("float64"),
|
124 |
-
"hedge_mean": datasets.Value("float64"),
|
125 |
-
"hedge_std": datasets.Value("float64"),
|
126 |
-
"intensity_mean": datasets.Value("float64"),
|
127 |
-
"rawred_mean": datasets.Value("float64"),
|
128 |
-
"rawblue_mean": datasets.Value("float64"),
|
129 |
-
"rawgreen_mean": datasets.Value("float64"),
|
130 |
-
"exred_mean": datasets.Value("float64"),
|
131 |
-
"exblue_mean": datasets.Value("float64"),
|
132 |
-
"exgreen_mean": datasets.Value("float64"),
|
133 |
-
"value_mean": datasets.Value("float64"),
|
134 |
-
"saturation_mean": datasets.Value("float64"),
|
135 |
-
"hue_mean": datasets.Value("float64"),
|
136 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
137 |
-
},
|
138 |
-
"window": {
|
139 |
-
"region_centroid_col": datasets.Value("float64"),
|
140 |
-
"region_centroid_row": datasets.Value("float64"),
|
141 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
142 |
-
"short_line_density": datasets.Value("float64"),
|
143 |
-
"vedge_mean": datasets.Value("float64"),
|
144 |
-
"vedge_std": datasets.Value("float64"),
|
145 |
-
"hedge_mean": datasets.Value("float64"),
|
146 |
-
"hedge_std": datasets.Value("float64"),
|
147 |
-
"intensity_mean": datasets.Value("float64"),
|
148 |
-
"rawred_mean": datasets.Value("float64"),
|
149 |
-
"rawblue_mean": datasets.Value("float64"),
|
150 |
-
"rawgreen_mean": datasets.Value("float64"),
|
151 |
-
"exred_mean": datasets.Value("float64"),
|
152 |
-
"exblue_mean": datasets.Value("float64"),
|
153 |
-
"exgreen_mean": datasets.Value("float64"),
|
154 |
-
"value_mean": datasets.Value("float64"),
|
155 |
-
"saturation_mean": datasets.Value("float64"),
|
156 |
-
"hue_mean": datasets.Value("float64"),
|
157 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
158 |
-
},
|
159 |
-
"path": {
|
160 |
-
"region_centroid_col": datasets.Value("float64"),
|
161 |
-
"region_centroid_row": datasets.Value("float64"),
|
162 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
163 |
-
"short_line_density": datasets.Value("float64"),
|
164 |
-
"vedge_mean": datasets.Value("float64"),
|
165 |
-
"vedge_std": datasets.Value("float64"),
|
166 |
-
"hedge_mean": datasets.Value("float64"),
|
167 |
-
"hedge_std": datasets.Value("float64"),
|
168 |
-
"intensity_mean": datasets.Value("float64"),
|
169 |
-
"rawred_mean": datasets.Value("float64"),
|
170 |
-
"rawblue_mean": datasets.Value("float64"),
|
171 |
-
"rawgreen_mean": datasets.Value("float64"),
|
172 |
-
"exred_mean": datasets.Value("float64"),
|
173 |
-
"exblue_mean": datasets.Value("float64"),
|
174 |
-
"exgreen_mean": datasets.Value("float64"),
|
175 |
-
"value_mean": datasets.Value("float64"),
|
176 |
-
"saturation_mean": datasets.Value("float64"),
|
177 |
-
"hue_mean": datasets.Value("float64"),
|
178 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
179 |
-
},
|
180 |
-
"grass": {
|
181 |
-
"region_centroid_col": datasets.Value("float64"),
|
182 |
-
"region_centroid_row": datasets.Value("float64"),
|
183 |
-
"region_centroid_pixel_count": datasets.Value("float64"),
|
184 |
-
"short_line_density": datasets.Value("float64"),
|
185 |
-
"vedge_mean": datasets.Value("float64"),
|
186 |
-
"vedge_std": datasets.Value("float64"),
|
187 |
-
"hedge_mean": datasets.Value("float64"),
|
188 |
-
"hedge_std": datasets.Value("float64"),
|
189 |
-
"intensity_mean": datasets.Value("float64"),
|
190 |
-
"rawred_mean": datasets.Value("float64"),
|
191 |
-
"rawblue_mean": datasets.Value("float64"),
|
192 |
-
"rawgreen_mean": datasets.Value("float64"),
|
193 |
-
"exred_mean": datasets.Value("float64"),
|
194 |
-
"exblue_mean": datasets.Value("float64"),
|
195 |
-
"exgreen_mean": datasets.Value("float64"),
|
196 |
-
"value_mean": datasets.Value("float64"),
|
197 |
-
"saturation_mean": datasets.Value("float64"),
|
198 |
-
"hue_mean": datasets.Value("float64"),
|
199 |
-
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
200 |
-
},
|
201 |
-
}
|
202 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
203 |
-
|
204 |
-
|
205 |
-
class SegmentConfig(datasets.BuilderConfig):
|
206 |
-
def __init__(self, **kwargs):
|
207 |
-
super(SegmentConfig, self).__init__(version=VERSION, **kwargs)
|
208 |
-
self.features = features_per_config[kwargs["name"]]
|
209 |
-
|
210 |
-
|
211 |
-
class Segment(datasets.GeneratorBasedBuilder):
|
212 |
-
# dataset versions
|
213 |
-
DEFAULT_CONFIG = "segment"
|
214 |
-
BUILDER_CONFIGS = [
|
215 |
-
SegmentConfig(name="segment", description="Segment for multiclass classification."),
|
216 |
-
SegmentConfig(name="brickface", description="Segment for binary classification."),
|
217 |
-
SegmentConfig(name="sky", description="Segment for binary classification."),
|
218 |
-
SegmentConfig(name="foliage", description="Segment for binary classification."),
|
219 |
-
SegmentConfig(name="cement", description="Segment for binary classification."),
|
220 |
-
SegmentConfig(name="window", description="Segment for binary classification."),
|
221 |
-
SegmentConfig(name="path", description="Segment for binary classification."),
|
222 |
-
SegmentConfig(name="grass", description="Segment for binary classification.")
|
223 |
-
]
|
224 |
-
|
225 |
-
|
226 |
-
def _info(self):
|
227 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
228 |
-
features=features_per_config[self.config.name])
|
229 |
-
|
230 |
-
return info
|
231 |
-
|
232 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
233 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
234 |
-
|
235 |
-
return [
|
236 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
237 |
-
]
|
238 |
-
|
239 |
-
def _generate_examples(self, filepath: str):
|
240 |
-
data = pandas.read_csv(filepath)
|
241 |
-
data = self.preprocess(data)
|
242 |
-
|
243 |
-
for row_id, row in data.iterrows():
|
244 |
-
data_row = dict(row)
|
245 |
-
|
246 |
-
yield row_id, data_row
|
247 |
-
|
248 |
-
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
249 |
-
data["class"] = data["class"].apply(lambda x: x - 1)
|
250 |
-
data = data.reset_index()
|
251 |
-
data.drop("index", axis="columns", inplace=True)
|
252 |
-
|
253 |
-
if self.config.name == "brickface":
|
254 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
|
255 |
-
if self.config.name == "sky":
|
256 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
|
257 |
-
if self.config.name == "foliage":
|
258 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
|
259 |
-
if self.config.name == "cement":
|
260 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
|
261 |
-
if self.config.name == "window":
|
262 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
|
263 |
-
if self.config.name == "path":
|
264 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
|
265 |
-
if self.config.name == "grass":
|
266 |
-
data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
|
267 |
-
|
268 |
-
for feature in _ENCODING_DICS:
|
269 |
-
encoding_function = partial(self.encode, feature)
|
270 |
-
data.loc[:, feature] = data[feature].apply(encoding_function)
|
271 |
-
|
272 |
-
return data[list(features_types_per_config[self.config.name].keys())]
|
273 |
-
|
274 |
-
def encode(self, feature, value):
|
275 |
-
if feature in _ENCODING_DICS:
|
276 |
-
return _ENCODING_DICS[feature][value]
|
277 |
-
raise ValueError(f"Unknown feature: {feature}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segment/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
sky/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
window/train.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|