heart / heart.py
mstz's picture
Upload heart.py
112b4c5
"""Heart"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"age",
"is_male",
"type_of_chest_pain",
"resting_blood_pressure",
"serum_cholesterol",
"fasting_blood_sugar",
"rest_electrocardiographic_type",
"maximum_heart_rate",
"has_exercise_induced_angina",
"depression_induced_by_exercise",
"slope_of_peak_exercise",
"number_of_major_vessels_colored_by_flourosopy",
"thal",
"has_hearth_disease"
]
DESCRIPTION = "Heart dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
_CITATION = """
@misc{misc_heart_disease_45,
author = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
title = {{Heart Disease}},
year = {1988},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C52P4X}}
}"""
# Dataset info
urls_per_split = {
"hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
}
features_types_per_config = {
"hungary": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
_ENCODING_DICS = {
"type_of_chest_pain": {
1: "typical angina",
2: "atypical angina",
3: "non-anginal pain",
4: "asymptomatic"
}
}
class HeartConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HeartConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Heart(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "hungary"
BUILDER_CONFIGS = [
HeartConfig(name="hungary",
description="Heart for binary classification, hungary dataset.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = _BASE_FEATURE_NAMES
data = self.preprocess(data, self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data, config):
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data[["age"]].applymap(int)
data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
data.drop("thal", axis="columns", inplace=True)
data = data[data.serum_cholesterol != "?"]
data = data.infer_objects()
data = data[data.resting_blood_pressure != "?"]
data = data[data.fasting_blood_sugar != "?"]
data = data[data.rest_electrocardiographic_type != "?"]
data = data[data.maximum_heart_rate != "?"]
data = data[data.has_exercise_induced_angina != "?"]
data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
"serum_cholesterol": float, "maximum_heart_rate": float,
"resting_blood_pressure": float, "fasting_blood_sugar": float})
return data
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")