File size: 4,937 Bytes
774c8dc
 
 
 
 
 
 
 
 
 
 
0570481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774c8dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a986e8
2b106b3
 
 
5a986e8
2b106b3
 
 
 
 
 
 
 
 
 
 
 
 
5a986e8
2b106b3
 
 
 
 
 
 
 
5a986e8
774c8dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: cc
task_categories:
- question-answering
language:
- en
tags:
- math
pretty_name: Can Vision-Language Models Solve Visual Math Equations?
size_categories:
- 1K<n<10K
dataset_info:
  features:
  - name: image
    dtype: image
  - name: c_count
    dtype: string
  - name: b_icon_type
    dtype: string
  - name: b
    dtype: string
  - name: a
    dtype: string
  - name: a_value
    dtype: string
  - name: b_icon
    dtype: string
  - name: a_icon_type
    dtype: string
  - name: b_count
    dtype: string
  - name: b_value
    dtype: string
  - name: c_icon_type
    dtype: string
  - name: c_value
    dtype: string
  - name: a_icon
    dtype: string
  - name: equation
    dtype: string
  - name: c
    dtype: string
  - name: c_icon
    dtype: string
  - name: a_count
    dtype: string
  splits:
  - name: two_variables_char_only
    num_bytes: 25833275.0
    num_examples: 1000
  - name: two_variables_icon_only
    num_bytes: 16183171.0
    num_examples: 1000
  - name: two_variables_icon_partial
    num_bytes: 16099172.0
    num_examples: 1000
  - name: two_variables_counting
    num_bytes: 7730753.0
    num_examples: 1000
  - name: three_variables_char_only
    num_bytes: 50892199.0
    num_examples: 1000
  - name: three_variables_icon_only
    num_bytes: 34912838.0
    num_examples: 1000
  - name: three_variables_icon_partial
    num_bytes: 34540943.0
    num_examples: 1000
  - name: three_variables_counting
    num_bytes: 11478229.0
    num_examples: 1000
  download_size: 194320410
  dataset_size: 197670580.0
configs:
- config_name: default
  data_files:
  - split: two_variables_char_only
    path: data/two_variables_char_only-*
  - split: two_variables_icon_only
    path: data/two_variables_icon_only-*
  - split: two_variables_icon_partial
    path: data/two_variables_icon_partial-*
  - split: two_variables_counting
    path: data/two_variables_counting-*
  - split: three_variables_char_only
    path: data/three_variables_char_only-*
  - split: three_variables_icon_only
    path: data/three_variables_icon_only-*
  - split: three_variables_icon_partial
    path: data/three_variables_icon_partial-*
  - split: three_variables_counting
    path: data/three_variables_counting-*
---

# Visual Equation Solving Benchmark

This repository contains the dataset introduced in the paper:  

**Can Vision-Language Models Solve Visual Math Equations?**  which is currently accepted in EMNLP 2025 (Main)

> Despite strong performance in vision and language understanding, Vision-Language Models (VLMs) struggle on tasks requiring integrated perception and symbolic reasoning. This benchmark evaluates VLMs on **visual equation solving**, where systems of linear equations are represented using **object icons** as variables and **icon repetition** as coefficients.  

---

## πŸ“– Overview

The **Visual Equation Solving Benchmark** tests whether VLMs can:  
1. **Recognize variables** represented as object icons.  
2. **Count coefficients** by inferring from repeated instances of icons.  
3. **Integrate recognition with symbolic reasoning** to solve equations.  

We provide multiple settings:  
- **Symbolic equations** (textual form, rendered as images).  
- **Visual-symbolic equations** (icons for variables, numeric text for coefficients).  
- **Fully visual equations** (both variables and coefficients represented visually).  

---

Example:  
```

🍎🍎🍎 + 🍌🍌 = 10
🍎 + 🍌🍌🍌🍌🍌 = 15

```

---

## πŸ“‚ Dataset Structure


There are 2 variants of the dataset based on number of variables used -
2 variables and 3 variables which can be found in the respective zip files.
Once you extract any of them you will see the following tree -
```
β”œβ”€β”€ char_only
β”‚   └── metadata.csv
β”‚   └── *.png
β”œβ”€β”€ counting
β”‚   └── metadata.csv
β”‚   └── *.png
β”œβ”€β”€ icon_only
β”‚   └── metadata.csv
β”‚   └── *.png
β”œβ”€β”€ icon_partial
β”‚   └── metadata.csv
β”‚   └── *.png
└── [two/three]-vars.txt
```
The char_only, icon_only, icon_partial, counting points to the
symbolic, visual, visual-symbolic and counting datasets mentioned in the paper
respectively. Each of them consist of the following metadata -
1. file_path to corresponding image
2. solution to variable
3. mapping to symbolic variable (in case of visual, visual-symbolic, counting dataset)

The base equations which are used to create the same are attached in the respective .txt file in the root level directory.
 
---

## πŸ“œ License

This dataset is released under the **CC BY 4.0 License**.
You are free to share, adapt, and build upon the data with attribution.

---

## πŸ“š Citation

If you use this dataset, please cite:

```bibtex
@inproceedings{anonymous2025vlm-math,
  title     = {Can Vision-Language Models Solve Visual Math Equations?},
  author    = {Anonymous},
  booktitle = {ACL (under review)},
  year      = {2025}
}
```