{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "a429de48-964c-4ad8-aa98-b3b180321f0a", "metadata": {}, "outputs": [], "source": [ "import json\n", "import numpy as np\n", "\n", "from pathlib import Path\n", "\n", "from tabulate import tabulate" ] }, { "cell_type": "code", "execution_count": 2, "id": "e78d66f4-f7fa-4802-b870-c5b5375a56c7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[PosixPath('electra-base/scandeval_benchmark_results.jsonl'), PosixPath('roberta-base/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-801k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-801k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-cased/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-801k/scandeval_benchmark_results.jsonl')]\n", "google/electra-base-discriminator\n", "FacebookAI/roberta-base\n", "model-garden-lms/bert-base-token-dropping-finewebs-1m\n", "model-garden-lms/bert-base-token-dropping-finewebs-801k\n", "model-garden-lms/teams-base-finewebs-901k\n", "model-garden-lms/bert-base-token-dropping-finewebs-851k\n", "model-garden-lms/bert-base-finewebs-851k\n", "model-garden-lms/teams-base-finewebs-951k\n", "model-garden-lms/bert-base-finewebs-801k\n", "model-garden-lms/bert-base-finewebs-901k\n", "google-bert/bert-base-cased\n", "model-garden-lms/bert-base-token-dropping-finewebs-901k\n", "model-garden-lms/bert-base-finewebs-1m\n", "model-garden-lms/teams-base-finewebs-851k\n", "model-garden-lms/teams-base-finewebs-1m\n", "model-garden-lms/bert-base-finewebs-951k\n", "model-garden-lms/bert-base-token-dropping-finewebs-951k\n", "model-garden-lms/teams-base-finewebs-801k\n" ] } ], "source": [ "benchmark_result_files = list(Path(\"./\").rglob(\"*scandeval_benchmark_results.jsonl\"))\n", "\n", "print(benchmark_result_files)\n", "\n", "model_id_results_mapping = {}\n", "\n", "for benchmark_result_file in benchmark_result_files: \n", " model_id = None\n", "\n", " dataset_metrics_mapping = {}\n", "\n", " scores = []\n", " \n", " with open(benchmark_result_file) as f_p:\n", " for line in f_p:\n", " line = line.strip()\n", " if not line:\n", " continue\n", " data = json.loads(line)\n", "\n", " model_id = data[\"model\"]\n", " dataset = data[\"dataset\"]\n", " total = data[\"results\"][\"total\"]\n", " if dataset == \"conll-en\":\n", " test_micro_f1_no_misc = round(total[\"test_micro_f1_no_misc\"], 2)\n", " test_micro_f1_no_misc_se = round(total[\"test_micro_f1_no_misc_se\"], 2)\n", " test_micro_f1 = round(total[\"test_micro_f1\"], 2)\n", " test_micro_f1_se = round(total[\"test_micro_f1_se\"], 2)\n", "\n", " scores.append(test_micro_f1_no_misc)\n", " scores.append(test_micro_f1)\n", " \n", " metric_string = f\"{test_micro_f1_no_misc} ± {test_micro_f1_no_misc_se} / {test_micro_f1} ± {test_micro_f1_se}\"\n", " dataset_metrics_mapping[dataset] = metric_string\n", " elif dataset in [\"sst5\", \"scala-en\"]:\n", " test_mcc = round(total[\"test_mcc\"], 2)\n", " test_mcc_se = round(total[\"test_mcc_se\"], 2)\n", " test_macro_f1 = round(total[\"test_macro_f1\"], 2)\n", " test_macro_f1_se = round(total[\"test_macro_f1_se\"], 2)\n", "\n", " scores.append(test_mcc)\n", " scores.append(test_macro_f1)\n", " \n", " metric_string = f\"{test_mcc} ± {test_mcc_se} / {test_macro_f1} ± {test_macro_f1_se}\"\n", " dataset_metrics_mapping[dataset] = metric_string\n", " elif dataset == \"squad\":\n", " test_em = round(total[\"test_em\"], 2)\n", " test_em_se = round(total[\"test_em_se\"], 2)\n", " test_f1 = round(total[\"test_f1\"], 2)\n", " test_f1_se = round(total[\"test_f1_se\"], 2)\n", "\n", " scores.append(test_em)\n", " scores.append(test_f1)\n", " \n", " metric_string = f\"{test_em} ± {test_em_se} / {test_f1} ± {test_f1_se}\"\n", " dataset_metrics_mapping[dataset] = metric_string\n", "\n", " score = round(np.mean(scores), 2)\n", " score_string = f\"{score}\"\n", " \n", " dataset_metrics_mapping[\"score\"] = score_string\n", " \n", " print(model_id)\n", " \n", " model_id_results_mapping[model_id] = dataset_metrics_mapping" ] }, { "cell_type": "markdown", "id": "30cdec2c-d0da-49a5-9965-b923f8212340", "metadata": {}, "source": [ "# Overall" ] }, { "cell_type": "code", "execution_count": 3, "id": "730ef788-95d6-4149-960b-6f2ca9311ea5", "metadata": {}, "outputs": [], "source": [ "model_id_order = [\n", " \"model-garden-lms/bert-base-finewebs-1m\",\n", " \"model-garden-lms/bert-base-finewebs-951k\",\n", " \"model-garden-lms/bert-base-finewebs-901k\",\n", " \"model-garden-lms/bert-base-finewebs-851k\",\n", " \"model-garden-lms/bert-base-finewebs-801k\",\n", " \"model-garden-lms/bert-base-token-dropping-finewebs-1m\",\n", " \"model-garden-lms/bert-base-token-dropping-finewebs-951k\",\n", " \"model-garden-lms/bert-base-token-dropping-finewebs-901k\",\n", " \"model-garden-lms/bert-base-token-dropping-finewebs-851k\",\n", " \"model-garden-lms/bert-base-token-dropping-finewebs-801k\",\n", " \"model-garden-lms/teams-base-finewebs-1m\",\n", " \"model-garden-lms/teams-base-finewebs-951k\",\n", " \"model-garden-lms/teams-base-finewebs-901k\",\n", " \"model-garden-lms/teams-base-finewebs-851k\",\n", " \"model-garden-lms/teams-base-finewebs-801k\",\n", " \"google-bert/bert-base-cased\",\n", " \"google/electra-base-discriminator\",\n", " \"FacebookAI/roberta-base\",\n", "]\n", "\n", "dataset_order = [\"score\", \"conll-en\", \"sst5\", \"scala-en\", \"squad\"]" ] }, { "cell_type": "code", "execution_count": 4, "id": "af8ee3a3-7798-4bed-8b45-c5e7ba89d9ac", "metadata": {}, "outputs": [], "source": [ "headers = [\"Model ID\", \"Avg. Score\", \"CoNLL-En\", \"SST5\", \"ScaLA-En\", \"SQuAD\"]\n", "\n", "table = []\n", "\n", "for model_id in model_id_order:\n", " current_row = []\n", " \n", " model_id_markdown = f\"[{model_id}](https://huggingface.co/{model_id})\"\n", " current_row.append(model_id_markdown)\n", "\n", " for dataset in dataset_order:\n", " current_row.append(model_id_results_mapping[model_id][dataset])\n", "\n", " table.append(current_row)" ] }, { "cell_type": "code", "execution_count": 5, "id": "24cafd52-5e5f-44b9-8a9d-1ce04991473f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "| Model ID | Avg. Score | CoNLL-En | SST5 | ScaLA-En | SQuAD |\n", "|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|\n", "| [model-garden-lms/bert-base-finewebs-1m](https://huggingface.co/model-garden-lms/bert-base-finewebs-1m) | 69.03 | 88.98 ± 0.43 / 88.67 ± 0.36 | 58.11 ± 1.2 / 59.77 ± 1.49 | 57.29 ± 3.57 / 77.15 ± 2.17 | 55.82 ± 1.35 / 66.46 ± 1.51 |\n", "| [model-garden-lms/bert-base-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-finewebs-951k) | 69.41 | 89.25 ± 0.4 / 88.9 ± 0.37 | 58.17 ± 1.26 / 59.86 ± 1.65 | 58.83 ± 3.46 / 78.22 ± 2.11 | 55.66 ± 1.19 / 66.36 ± 1.42 |\n", "| [model-garden-lms/bert-base-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-finewebs-901k) | 69.12 | 89.22 ± 0.69 / 88.97 ± 0.45 | 57.93 ± 1.1 / 59.49 ± 1.44 | 58.66 ± 2.99 / 77.94 ± 1.88 | 55.0 ± 1.05 / 65.75 ± 1.29 |\n", "| [model-garden-lms/bert-base-finewebs-851k](https://huggingface.co/model-garden-lms/bert-base-finewebs-851k) | 68.76 | 89.29 ± 0.52 / 89.0 ± 0.51 | 57.68 ± 0.97 / 59.01 ± 1.23 | 57.11 ± 3.77 / 77.36 ± 1.97 | 54.79 ± 1.21 / 65.87 ± 1.32 |\n", "| [model-garden-lms/bert-base-finewebs-801k](https://huggingface.co/model-garden-lms/bert-base-finewebs-801k) | 68.12 | 88.92 ± 0.45 / 88.6 ± 0.44 | 57.64 ± 1.09 / 60.8 ± 1.88 | 54.28 ± 4.83 / 75.48 ± 2.97 | 54.13 ± 1.61 / 65.09 ± 1.65 |\n", "| [model-garden-lms/bert-base-token-dropping-finewebs-1m](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-1m) | 67.66 | 88.68 ± 0.76 / 88.47 ± 0.62 | 57.4 ± 1.7 / 59.61 ± 1.6 | 52.72 ± 5.13 / 73.6 ± 4.42 | 55.04 ± 1.54 / 65.72 ± 1.75 |\n", "| [model-garden-lms/bert-base-token-dropping-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-951k) | 66.87 | 88.81 ± 0.68 / 88.64 ± 0.54 | 57.44 ± 1.39 / 56.85 ± 2.09 | 50.91 ± 5.08 / 72.22 ± 4.2 | 54.63 ± 1.3 / 65.43 ± 1.43 |\n", "| [model-garden-lms/bert-base-token-dropping-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k) | 68.01 | 88.98 ± 0.64 / 88.67 ± 0.55 | 57.79 ± 1.31 / 58.91 ± 1.85 | 54.25 ± 6.3 / 75.73 ± 3.54 | 54.4 ± 0.72 / 65.31 ± 1.01 |\n", "| [model-garden-lms/bert-base-token-dropping-finewebs-851k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-851k) | 67.97 | 88.9 ± 0.7 / 88.81 ± 0.54 | 58.0 ± 1.02 / 58.73 ± 1.8 | 54.04 ± 2.61 / 74.89 ± 2.07 | 54.75 ± 1.08 / 65.66 ± 1.26 |\n", "| [model-garden-lms/bert-base-token-dropping-finewebs-801k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-801k) | 67.8 | 88.95 ± 0.7 / 88.73 ± 0.58 | 57.71 ± 1.43 / 60.5 ± 1.69 | 50.95 ± 6.3 / 74.16 ± 3.2 | 55.24 ± 1.37 / 66.13 ± 1.24 |\n", "| [model-garden-lms/teams-base-finewebs-1m](https://huggingface.co/model-garden-lms/teams-base-finewebs-1m) | 72.64 | 89.27 ± 0.41 / 88.82 ± 0.41 | 59.58 ± 0.64 / 62.63 ± 3.0 | 66.72 ± 0.94 / 83.01 ± 0.45 | 59.95 ± 0.71 / 71.13 ± 0.58 |\n", "| [model-garden-lms/teams-base-finewebs-951k](https://huggingface.co/model-garden-lms/teams-base-finewebs-951k) | 72.06 | 89.64 ± 0.52 / 89.18 ± 0.42 | 60.31 ± 1.03 / 58.82 ± 2.79 | 65.85 ± 2.01 / 82.47 ± 1.23 | 59.36 ± 0.77 / 70.82 ± 0.62 |\n", "| [model-garden-lms/teams-base-finewebs-901k](https://huggingface.co/model-garden-lms/teams-base-finewebs-901k) | 72.19 | 89.31 ± 0.52 / 88.71 ± 0.53 | 59.86 ± 1.05 / 62.17 ± 2.61 | 64.89 ± 2.86 / 81.84 ± 1.65 | 59.74 ± 0.55 / 71.0 ± 0.5 |\n", "| [model-garden-lms/teams-base-finewebs-851k](https://huggingface.co/model-garden-lms/teams-base-finewebs-851k) | 71.41 | 89.48 ± 0.47 / 88.99 ± 0.52 | 59.17 ± 1.2 / 60.25 ± 3.25 | 63.01 ± 2.31 / 80.77 ± 1.38 | 59.13 ± 0.53 / 70.5 ± 0.49 |\n", "| [model-garden-lms/teams-base-finewebs-801k](https://huggingface.co/model-garden-lms/teams-base-finewebs-801k) | 70.73 | 89.2 ± 0.43 / 88.8 ± 0.46 | 59.21 ± 1.5 / 61.41 ± 2.36 | 58.47 ± 4.1 / 78.24 ± 2.4 | 59.59 ± 0.66 / 70.9 ± 0.59 |\n", "| [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) | 62.26 | 87.39 ± 0.79 / 87.11 ± 0.66 | 54.49 ± 1.36 / 53.22 ± 1.15 | 52.08 ± 2.13 / 74.52 ± 1.31 | 38.63 ± 2.1 / 50.68 ± 1.87 |\n", "| [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) | 69.26 | 87.82 ± 0.69 / 86.83 ± 0.62 | 62.3 ± 1.12 / 55.93 ± 0.67 | 62.61 ± 1.21 / 80.85 ± 0.59 | 52.51 ± 0.86 / 65.2 ± 0.85 |\n", "| [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) | 68.96 | 90.35 ± 0.23 / 90.14 ± 0.2 | 60.95 ± 1.4 / 57.52 ± 1.97 | 50.64 ± 1.69 / 74.55 ± 0.9 | 57.82 ± 1.35 / 69.68 ± 1.02 |\n" ] } ], "source": [ "print(tabulate(table, headers=headers, tablefmt=\"github\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 5 }