MixBench25 / dataset_dict.py
mixed-modality-search's picture
Add files using upload-large-folder tool
6399ba5 verified
import os
import json
import datasets
class MixBench(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features({
"query_id": datasets.Value("string"),
"query_text": datasets.Value("string"),
"query_image": datasets.Value("string"),
"corpus_id": datasets.Value("string"),
"corpus_text": datasets.Value("string"),
"corpus_image": datasets.Value("string"),
"score": datasets.Value("int32")
})
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir}
)
]
def _generate_examples(self, data_dir):
with open(os.path.join(data_dir, "queries.jsonl")) as fq:
queries = {q["query_id"]: q for q in map(json.loads, fq)}
with open(os.path.join(data_dir, "corpus.jsonl")) as fc:
corpus = {c["corpus_id"]: c for c in map(json.loads, fc)}
with open(os.path.join(data_dir, "qrels.tsv")) as fr:
for idx, line in enumerate(fr):
qid, cid, score = line.strip().split("\t")
yield idx, {
"query_id": qid,
"query_text": queries[qid].get("text", ""),
"query_image": queries[qid].get("image", ""),
"corpus_id": cid,
"corpus_text": corpus[cid].get("text", ""),
"corpus_image": corpus[cid].get("image", ""),
"score": int(score)
}