import os import json import csv import datasets _DESCRIPTION = """ MixBench is a benchmark for mixed-modality retrieval across text, image, and image+text corpora. """ _HOMEPAGE = "https://huggingface.co/datasets/andy0207/mixbench" class MixBench(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name=name, version=datasets.Version("1.0.0"), description=f"MixBench subset: {name}") for name in ["MSCOCO", "Google_WIT", "VisualNews", "OVEN"] ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, homepage=_HOMEPAGE, features=datasets.Features({ "query_id": datasets.Value("string"), "corpus_id": datasets.Value("string"), "text": datasets.Value("string"), "image": datasets.Value("string"), "score": datasets.Value("int32"), }) ) def _split_generators(self, dl_manager): # 确保这个方法存在且正确实现 subset_dir = os.path.join(dl_manager.manual_dir or dl_manager._base_path, self.config.name) return [ datasets.SplitGenerator( name="query", gen_kwargs={"path": os.path.join(subset_dir, "queries.jsonl"), "split": "query"}, ), datasets.SplitGenerator( name="corpus", gen_kwargs={"path": os.path.join(subset_dir, "corpus.jsonl"), "split": "corpus"}, ), datasets.SplitGenerator( name="mixed_corpus", gen_kwargs={"path": os.path.join(subset_dir, "mixed_corpus.jsonl"), "split": "mixed_corpus"}, ), datasets.SplitGenerator( name="qrel", gen_kwargs={"path": os.path.join(subset_dir, "qrels", "qrels.tsv"), "split": "qrel"}, ), ] def _generate_examples(self, path, split): if split == "query": with open(path, encoding="utf-8") as f: for idx, line in enumerate(f): item = json.loads(line) yield idx, { "query_id": item.get("query_id", ""), "corpus_id": "", "text": item.get("text", ""), "image": item.get("image", ""), "score": 0, } elif split == "corpus" or split == "mixed_corpus": with open(path, encoding="utf-8") as f: for idx, line in enumerate(f): item = json.loads(line) yield idx, { "query_id": "", "corpus_id": item.get("corpus_id", ""), "text": item.get("text", ""), "image": item.get("image", ""), "score": 0, } elif split == "qrel": with open(path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for idx, row in enumerate(reader): yield idx, { "query_id": row["query_id"], "corpus_id": row["corpus_id"], "text": "", "image": "", "score": int(row["score"]) }