# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import gzip import datasets from collections import defaultdict from dataclasses import dataclass _CITATION = """ """ surprise_languages = ["de", "yo"] new_languages = ["es", "fa", "fr", "hi", "zh"] + surprise_languages languages = ["ar", "bn", "en", "es", "fa", "fi", "fr", "hi", "id", "ja", "ko", "ru", "sw", "te", "th", "zh"] + surprise_languages _DESCRIPTION = "dataset load script for MIRACL" def get_first_stage_runfile(lang): first_stages = [ "bm25", "mdpr", "hybrid", ] return { first_stage: f"https://huggingface.co/datasets/miracl/miracl-reranking/resolve/main/data/{first_stage}/{lang}.gz" for first_stage in first_stages } _DATASET_URLS = { lang: { "dev": { "topics": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/topics/topics.miracl-v1.0-{lang}-dev.tsv", "qrels": f"https://huggingface.co/datasets/miracl/miracl/resolve/main/miracl-v1.0-{lang}/qrels/qrels.miracl-v1.0-{lang}-dev.tsv", **get_first_stage_runfile(lang), }, } for lang in languages } def load_topic(fn): qid2topic = {} with open(fn, encoding="utf-8") as f: for line in f: qid, topic = line.strip().split("\t") qid2topic[qid] = topic return qid2topic def load_qrels(fn): if fn is None: return None qrels = defaultdict(dict) with open(fn, encoding="utf-8") as f: for line in f: qid, _, docid, rel = line.strip().split("\t") qrels[qid][docid] = int(rel) return qrels def load_runfile(fn, topk=100): file_handle = gzip.open(fn, "rb") if fn.endswith(".gz") else open(fn, "r") runs = defaultdict(dict) for line in file_handle: if not isinstance(line, str): line = line.decode() qid, _, docid, _, score, _ = line.strip().split() runs[qid][docid] = float(score) if topk > 0: for qid in runs: runs[qid] = dict(sorted( runs[qid].items(), key=lambda doc_score: doc_score[1], reverse=True, )[:topk]) return runs class MIRACLReranking(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version("1.0.0"), name=lang, description=f"MIRACL Reranking in language {lang}." ) for lang in languages ] def _info(self): features = datasets.Features( query=datasets.Value("string"), positive=datasets.Sequence(datasets.Value("string")), negative=datasets.Sequence(datasets.Value("string")), candidates=datasets.Sequence(datasets.Value("string")), ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="https://project-miracl.github.io", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]["dev"]) splits = [ datasets.SplitGenerator( name="dev", gen_kwargs={ "filepaths": downloaded_files, }, ), ] return splits def _generate_examples(self, filepaths): def formulate_doc(title, text): return f"{title} {text}" lang = self.config.name miracl_corpus = datasets.load_dataset("miracl/miracl-corpus", lang)["train"] docid2doc = {doc["docid"]: formulate_doc(doc["title"], doc["text"]) for doc in miracl_corpus} topic_fn = filepaths["topics"] qrel_fn = filepaths["qrels"] runfile = filepaths["bm25"] qid2topic = load_topic(topic_fn) qrels = load_qrels(qrel_fn) runs = load_runfile(runfile, topk=100) for qid in qid2topic: data = {} pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else [] neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else [] data["query"] = qid2topic[qid] data["positive"] = [docid2doc[docid] for docid in pos_docids] data["negative"] = [docid2doc[docid] for docid in neg_docids] data["candidates"] = [docid2doc[docid] for docid in runs[qid]] yield qid, data