mikkoim commited on
Commit
9a30834
·
verified ·
1 Parent(s): 4a3cff8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -2
README.md CHANGED
@@ -38,7 +38,6 @@ Pretrained models: https://huggingface.co/mikkoim/aquamonitor-baselines
38
 
39
  ## Uses
40
 
41
-
42
  ### Direct Use
43
 
44
  The dataset is intended for benchmarking computer vision methods applied to aquatic invertebrate identification. Specifically, it is used to define and evaluate performance on three benchmark tasks:
@@ -82,4 +81,57 @@ Few-shot benchmark: Targeting categories with limited training examples to evalu
82
 
83
  ### Columns
84
 
85
- See `README-metadata.md` for metadata column descriptions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  ## Uses
40
 
 
41
  ### Direct Use
42
 
43
  The dataset is intended for benchmarking computer vision methods applied to aquatic invertebrate identification. Specifically, it is used to define and evaluate performance on three benchmark tasks:
 
81
 
82
  ### Columns
83
 
84
+ See `README-metadata.md` for metadata column descriptions.
85
+
86
+ ## Usage
87
+
88
+ Using Huggingface `datasets`:
89
+ ```python
90
+ import datasets
91
+ ds = datasets.load_dataset("mikkoim/aquamonitor", data_dir="images", split="train", cache_dir="aquamonitor")
92
+ ```
93
+ The full dataset will consume \~100GB of disk space, and it is recommended to cache it to a known location.
94
+
95
+ For testing, you can use the thumbnail dataset (~10GB):
96
+ ```python
97
+ ds_thumbs = datasets.load_dataset("mikkoim/aquamonitor", data_dir="thumbnail", split="train", cache_dir="aquamonitor")
98
+ ```
99
+
100
+ You can also download the raw `.tar` partitions from [here](https://huggingface.co/datasets/mikkoim/aquamonitor/tree/main/images)
101
+
102
+ The metadata can be accessed straight from Huggingface using pandas:
103
+
104
+ ```python
105
+ import pandas as pd
106
+ df = pd.read_parquet("https://huggingface.co/datasets/mikkoim/aquamonitor/resolve/main/aquamonitor-monitor.parquet.gzip")
107
+ df_train = df.query("fold0 == 'train'")
108
+ df_val = df.query("fold0 == 'val'")
109
+ ```
110
+
111
+ The benchmark splits are in separate files:
112
+
113
+ ```python
114
+ df_classif = pd.read_parquet("https://huggingface.co/datasets/mikkoim/aquamonitor/resolve/main/aquamonitor-classif.parquet.gzip")
115
+ df_fewshot = pd.read_parquet("https://huggingface.co/datasets/mikkoim/aquamonitor/resolve/main/aquamonitor-fewshot.parquet.gzip")
116
+ ```
117
+
118
+ ## Dataset Creation
119
+
120
+ ### Source Data
121
+ #### Data Collection and Processing
122
+
123
+ The samples are from a national monitoring programme for agriculture and forestry diffuse loading impacts on streams and lakes (MaaMet-monitoring) [More information in Finnish](https://www.syke.fi/fi/palvelut/seurannat-ja-inventoinnit/maa-ja-metsatalouden-seurantaohjelma).
124
+
125
+ The samples imaged are only from lakes and not streams.
126
+
127
+ Comparing our specimen counts to a national monitoring database, we were able to image 89.58% (out of 25,546) of 2021 specimens and 72.65% (out of 27,952) of 2022 specimens.
128
+
129
+ Taxonomic coverage is 152 taxa out of 161 taxa encountered during the two monitoring years.
130
+
131
+ The specimens were imaged using the [BIODISCOVER device](https://github.com/Aarhus-University-MPE/BioDiscover/) and its software.
132
+
133
+ Detailed code repositories for all phases of dataset processing can be found from https://github.com/mikkoim/aquamonitor-codes
134
+
135
+ ## Bias, Risks, and Limitations
136
+
137
+ The dataset is limited to Finnish lake invertebrates, collected with kick-sampling methods.