michsethowusu commited on
Commit
e808e3c
·
verified ·
1 Parent(s): 9a2d3d6

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +162 -10
README.md CHANGED
@@ -1,22 +1,174 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: audio
5
  dtype: audio
6
  - name: text
7
  dtype: string
 
8
  splits:
9
  - name: train
10
- num_bytes: 5239359293.898
11
  num_examples: 413463
12
- download_size: 5237405839
13
- dataset_size: 5239359293.898
14
- configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
 
 
 
 
19
  ---
20
- # Dataset Card for "twi-words-speech-text-parallel-v2"
21
 
22
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - tw
4
+ license: cc-by-4.0
5
+ task_categories:
6
+ - automatic-speech-recognition
7
+ - text-to-speech
8
+ task_ids:
9
+ - keyword-spotting
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ modalities:
15
+ - audio
16
+ - text
17
  dataset_info:
18
  features:
19
  - name: audio
20
  dtype: audio
21
  - name: text
22
  dtype: string
23
+ config_name: default
24
  splits:
25
  - name: train
26
+ num_bytes: 0
27
  num_examples: 413463
28
+ download_size: 0
29
+ dataset_size: 0
30
+ tags:
31
+ - speech
32
+ - twi
33
+ - akan
34
+ - ghana
35
+ - african-languages
36
+ - low-resource
37
+ - parallel-corpus
38
+ pretty_name: Twi Words Speech-Text Parallel Dataset
39
  ---
 
40
 
41
+ # Twi Words Speech-Text Parallel Dataset
42
+
43
+ ## Dataset Description
44
+
45
+ This dataset contains 413463 parallel speech-text pairs for Twi (Akan), a language spoken primarily in Ghana. The dataset consists of audio recordings paired with their corresponding text transcriptions, making it suitable for automatic speech recognition (ASR) and text-to-speech (TTS) tasks.
46
+
47
+ ### Dataset Summary
48
+
49
+ - **Language**: Twi (Akan) - `tw`
50
+ - **Task**: Speech Recognition, Text-to-Speech
51
+ - **Size**: 413463 audio files > 1KB (small/corrupted files filtered out)
52
+ - **Format**: WAV audio files with corresponding text labels
53
+ - **Modalities**: Audio + Text
54
+
55
+ ### Supported Tasks
56
+
57
+ - **Automatic Speech Recognition (ASR)**: Train models to convert Twi speech to text
58
+ - **Text-to-Speech (TTS)**: Use parallel data for TTS model development
59
+ - **Keyword Spotting**: Identify specific Twi words in audio
60
+ - **Phonetic Analysis**: Study Twi pronunciation patterns
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Fields
65
+
66
+ - `audio`: Audio file in WAV format
67
+ - `text`: Corresponding text transcription
68
+
69
+ ### Data Splits
70
+
71
+ The dataset contains a single training split with 413463 filtered audio files.
72
+
73
+ ### File Structure
74
+
75
+ Each audio segment is stored as a numbered pair:
76
+ - `NNNN.wav`: Audio file (e.g., `0001.wav`)
77
+ - `NNNN.txt`: Corresponding text file (e.g., `0001.txt`)
78
+
79
+ This structure ensures clean organization and easy pairing of audio-text data.
80
+
81
+ ## Dataset Creation
82
+
83
+ ### Source Data
84
+
85
+ The audio data has been sourced ethically from consenting contributors. To protect the privacy of the original authors and speakers, specific source information cannot be shared publicly.
86
+
87
+ ### Data Processing
88
+
89
+ 1. Audio files were processed using forced alignment techniques
90
+ 2. Word-level segmentation was performed with padding to prevent abrupt cuts
91
+ 3. Audio segments were filtered based on:
92
+ - Minimum duration requirements
93
+ - Volume/vocal content thresholds
94
+ - File size validation (> 1KB)
95
+ 4. Each valid segment was saved as a numbered audio-text pair
96
+ 5. Audio processing used the [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) tool for alignment and quality assurance
97
+
98
+ ### Quality Control
99
+
100
+ - Empty or silent audio segments were automatically filtered out
101
+ - Very short segments (< 200ms) were excluded
102
+ - Low-volume segments were removed to ensure vocal content
103
+ - Audio padding (100ms) was added to prevent abrupt word cuts
104
+
105
+ ### Annotations
106
+
107
+ Text annotations are stored in separate `.txt` files corresponding to each audio file, representing the exact spoken content in each audio segment.
108
+
109
+ ## Considerations for Using the Data
110
+
111
+ ### Social Impact of Dataset
112
+
113
+ This dataset contributes to the preservation and digital representation of Twi, supporting:
114
+ - Language technology development for underrepresented languages
115
+ - Educational resources for Twi language learning
116
+ - Cultural preservation through digital archives
117
+
118
+ ### Discussion of Biases
119
+
120
+ - The dataset may reflect the pronunciation patterns and dialects of specific regions or speakers
121
+ - Audio quality and recording conditions may vary across samples
122
+ - The vocabulary is limited to the words present in the collected samples
123
+
124
+ ### Other Known Limitations
125
+
126
+ - Limited vocabulary scope (word-level rather than sentence-level)
127
+ - Potential audio quality variations
128
+ - Regional dialect representation may be uneven
129
+ - Automatic filtering may have removed some valid segments
130
+
131
+ ## Additional Information
132
+
133
+ ### Licensing Information
134
+
135
+ This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
136
+
137
+ ### Acknowledgments
138
+
139
+ - Audio processing and alignment performed using [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner)
140
+ - The original audio is produced by The Ghana Institute of Linguistics, Literacy and Bible Translation in partnership with Davar Partners
141
+ - Automated quality filtering and padding applied to ensure high-quality audio segments
142
+
143
+ ### Citation Information
144
+
145
+ If you use this dataset in your research, please cite:
146
+
147
+ ```
148
+ @dataset{twi_words_parallel_2025,
149
+ title={Twi Words Speech-Text Parallel Dataset},
150
+ year={2025},
151
+ publisher={Hugging Face},
152
+ howpublished={\url{https://huggingface.co/datasets/michsethowusu/twi-words-speech-text-parallel}}
153
+ }
154
+ ```
155
+
156
+ ### Contact
157
+
158
+ For questions or concerns about this dataset, please open an issue in the dataset repository.
159
+
160
+ ## Usage Example
161
+
162
+ ```python
163
+ from datasets import load_dataset
164
+
165
+ # Load the dataset
166
+ dataset = load_dataset("michsethowusu/twi-words-speech-text-parallel")
167
+
168
+ # Access audio and text pairs
169
+ for example in dataset["train"]:
170
+ audio = example["audio"]
171
+ text = example["text"]
172
+ print(f"Text: {text}")
173
+ print(f"Audio sample rate: {audio['sampling_rate']}")
174
+ ```