# Sample code for using the Portuguese OCR Dataset import h5py import numpy as np from PIL import Image import matplotlib.pyplot as plt from transformers import VisionEncoderDecoderModel, TrOCRProcessor import torch # Load the dataset def load_dataset(file_path): with h5py.File(file_path, 'r') as f: images = f['images'][:] texts = [t.decode('utf-8') if isinstance(t, bytes) else t for t in f['texts'][:]] return images, texts # Load train dataset train_images, train_texts = load_dataset('train_dataset.h5') print(f"Loaded {len(train_images)} training samples") # Display a random sample def display_sample(images, texts, idx=None): if idx is None: idx = np.random.randint(0, len(images)) print(f"Text: {texts[idx]}") plt.figure(figsize=(12, 3)) plt.imshow(images[idx]) plt.axis('off') plt.title(f"Sample {idx}") plt.show() return idx # Display a random sample sample_idx = display_sample(train_images, train_texts) # Example of using with TrOCR def test_with_trocr(image, model_name="microsoft/trocr-base-printed"): # Load model and processor processor = TrOCRProcessor.from_pretrained(model_name) model = VisionEncoderDecoderModel.from_pretrained(model_name) # Convert image to PIL if it's a numpy array if isinstance(image, np.ndarray): image = Image.fromarray(image) # Prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # Generate prediction generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text # Uncomment to test a sample with a pre-trained TrOCR model # sample_img = train_images[sample_idx] # predicted_text = test_with_trocr(sample_img) # print(f"Original text: {train_texts[sample_idx]}") # print(f"Predicted text: {predicted_text}")