Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ configs:
|
|
7 |
- split: dev
|
8 |
path: "data/dev.jsonl"
|
9 |
- split: eval
|
10 |
-
path: "data/
|
11 |
language:
|
12 |
- en
|
13 |
license: cc-by-nc-sa-4.0
|
@@ -30,7 +30,13 @@ pretty_name: BioASQ 12B RAG Dataset
|
|
30 |
|
31 |
A processed version of the BioASQ 12B dataset optimized for Retrieval-Augmented Generation (RAG) applications in biomedical question answering.
|
32 |
|
33 |
-
This dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Dataset Structure
|
36 |
|
@@ -60,7 +66,7 @@ The dataset contains three main components:
|
|
60 |
- `type`: Question type (e.g., factoid, list, yes/no, summary)
|
61 |
- `snippets`: Relevant snippets from abstracts
|
62 |
|
63 |
-
3. **
|
64 |
- Same structure as dev questions
|
65 |
|
66 |
## Usage
|
@@ -78,13 +84,13 @@ from datasets import load_dataset
|
|
78 |
dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
|
79 |
|
80 |
# Access the corpus
|
81 |
-
corpus = dataset["corpus"]
|
82 |
|
83 |
# Access the development questions
|
84 |
-
dev_questions = dataset["dev"]
|
85 |
|
86 |
-
# Access the
|
87 |
-
|
88 |
```
|
89 |
|
90 |
### Example RAG Application
|
|
|
7 |
- split: dev
|
8 |
path: "data/dev.jsonl"
|
9 |
- split: eval
|
10 |
+
path: "data/eval.jsonl"
|
11 |
language:
|
12 |
- en
|
13 |
license: cc-by-nc-sa-4.0
|
|
|
30 |
|
31 |
A processed version of the BioASQ 12B dataset optimized for Retrieval-Augmented Generation (RAG) applications in biomedical question answering.
|
32 |
|
33 |
+
This dataset contains two distinct subsets specifically designed for RAG applications:
|
34 |
+
|
35 |
+
1. **A text corpus of PubMed abstracts** ready for indexing and retrieval, containing detailed metadata and full abstract text.
|
36 |
+
|
37 |
+
2. **An evaluation dataset** consisting of biomedical questions, each paired with an ideal answer and a list of passage IDs that are relevant to answering the question.
|
38 |
+
|
39 |
+
This structure makes it ideal for building and evaluating RAG systems that retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
|
40 |
|
41 |
## Dataset Structure
|
42 |
|
|
|
66 |
- `type`: Question type (e.g., factoid, list, yes/no, summary)
|
67 |
- `snippets`: Relevant snippets from abstracts
|
68 |
|
69 |
+
3. **Eval Questions** (`data/eval.jsonl`): Eval set of biomedical questions.
|
70 |
- Same structure as dev questions
|
71 |
|
72 |
## Usage
|
|
|
84 |
dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
|
85 |
|
86 |
# Access the corpus
|
87 |
+
corpus = dataset["text-corpus"]
|
88 |
|
89 |
# Access the development questions
|
90 |
+
dev_questions = dataset["question-answer-passages"]["dev"]
|
91 |
|
92 |
+
# Access the eval questions
|
93 |
+
eval_questions = dataset["question-answer-passages"]["eval"]
|
94 |
```
|
95 |
|
96 |
### Example RAG Application
|