mattmorgis commited on
Commit
196eb48
·
verified ·
1 Parent(s): 2b3bfcf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -7,7 +7,7 @@ configs:
7
  - split: dev
8
  path: "data/dev.jsonl"
9
  - split: eval
10
- path: "data/test.jsonl"
11
  language:
12
  - en
13
  license: cc-by-nc-sa-4.0
@@ -30,7 +30,13 @@ pretty_name: BioASQ 12B RAG Dataset
30
 
31
  A processed version of the BioASQ 12B dataset optimized for Retrieval-Augmented Generation (RAG) applications in biomedical question answering.
32
 
33
- This dataset provides a structured collection of biomedical questions paired with relevant PubMed abstracts and gold standard answers. It is specifically formatted for RAG pipelines, making it ideal for training and evaluating systems that need to retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
 
 
 
 
 
 
34
 
35
  ## Dataset Structure
36
 
@@ -60,7 +66,7 @@ The dataset contains three main components:
60
  - `type`: Question type (e.g., factoid, list, yes/no, summary)
61
  - `snippets`: Relevant snippets from abstracts
62
 
63
- 3. **Test Questions** (`data/test.jsonl`): Test set of biomedical questions.
64
  - Same structure as dev questions
65
 
66
  ## Usage
@@ -78,13 +84,13 @@ from datasets import load_dataset
78
  dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
79
 
80
  # Access the corpus
81
- corpus = dataset["corpus"]
82
 
83
  # Access the development questions
84
- dev_questions = dataset["dev"]
85
 
86
- # Access the test questions
87
- test_questions = dataset["test"]
88
  ```
89
 
90
  ### Example RAG Application
 
7
  - split: dev
8
  path: "data/dev.jsonl"
9
  - split: eval
10
+ path: "data/eval.jsonl"
11
  language:
12
  - en
13
  license: cc-by-nc-sa-4.0
 
30
 
31
  A processed version of the BioASQ 12B dataset optimized for Retrieval-Augmented Generation (RAG) applications in biomedical question answering.
32
 
33
+ This dataset contains two distinct subsets specifically designed for RAG applications:
34
+
35
+ 1. **A text corpus of PubMed abstracts** ready for indexing and retrieval, containing detailed metadata and full abstract text.
36
+
37
+ 2. **An evaluation dataset** consisting of biomedical questions, each paired with an ideal answer and a list of passage IDs that are relevant to answering the question.
38
+
39
+ This structure makes it ideal for building and evaluating RAG systems that retrieve relevant biomedical information from a corpus and generate accurate, evidence-based answers to complex biomedical questions.
40
 
41
  ## Dataset Structure
42
 
 
66
  - `type`: Question type (e.g., factoid, list, yes/no, summary)
67
  - `snippets`: Relevant snippets from abstracts
68
 
69
+ 3. **Eval Questions** (`data/eval.jsonl`): Eval set of biomedical questions.
70
  - Same structure as dev questions
71
 
72
  ## Usage
 
84
  dataset = load_dataset("mattmorgis/bioasq-12b-rag-dataset")
85
 
86
  # Access the corpus
87
+ corpus = dataset["text-corpus"]
88
 
89
  # Access the development questions
90
+ dev_questions = dataset["question-answer-passages"]["dev"]
91
 
92
+ # Access the eval questions
93
+ eval_questions = dataset["question-answer-passages"]["eval"]
94
  ```
95
 
96
  ### Example RAG Application