massomo commited on
Commit
1a22d2b
·
verified ·
1 Parent(s): 8c8848e

Upload folder using huggingface_hub

Browse files
examples/basic_analysis.R ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Australian Health and Geographic Data (AHGD) - R Example
2
+ #
3
+ # This example demonstrates how to load and analyse the AHGD dataset using R
4
+
5
+ library(arrow) # For Parquet files
6
+ library(readr) # For CSV files
7
+ library(jsonlite) # For JSON files
8
+ library(dplyr) # For data manipulation
9
+ library(ggplot2) # For visualisation
10
+
11
+ # Load dataset (Parquet recommended for performance)
12
+ load_ahgd_data <- function(format = "parquet") {
13
+ if (format == "parquet") {
14
+ data <- arrow::read_parquet("ahgd_data.parquet")
15
+ } else if (format == "csv") {
16
+ data <- readr::read_csv("ahgd_data.csv")
17
+ } else if (format == "json") {
18
+ json_data <- jsonlite::fromJSON("ahgd_data.json")
19
+ data <- as.data.frame(json_data$data)
20
+ } else {
21
+ stop("Unsupported format. Use 'parquet', 'csv', or 'json'")
22
+ }
23
+
24
+ return(data)
25
+ }
26
+
27
+ # Basic analysis
28
+ analyse_ahgd <- function() {
29
+ # Load data
30
+ df <- load_ahgd_data("parquet")
31
+
32
+ cat("Dataset dimensions:", dim(df), "\n")
33
+ cat("Column names:", paste(names(df), collapse = ", "), "\n\n")
34
+
35
+ # Summary statistics for numeric columns
36
+ numeric_cols <- sapply(df, is.numeric)
37
+ if (any(numeric_cols)) {
38
+ cat("Summary statistics:\n")
39
+ print(summary(df[, numeric_cols]))
40
+ }
41
+
42
+ # State-level health indicators
43
+ if ("state_name" %in% names(df) && "life_expectancy_years" %in% names(df)) {
44
+ state_summary <- df %>%
45
+ group_by(state_name) %>%
46
+ summarise(
47
+ avg_life_expectancy = mean(life_expectancy_years, na.rm = TRUE),
48
+ avg_smoking = mean(smoking_prevalence_percent, na.rm = TRUE),
49
+ avg_obesity = mean(obesity_prevalence_percent, na.rm = TRUE),
50
+ .groups = 'drop'
51
+ )
52
+
53
+ cat("\nHealth indicators by state:\n")
54
+ print(state_summary)
55
+ }
56
+
57
+ return(df)
58
+ }
59
+
60
+ # Create visualisations
61
+ create_plots <- function(df) {
62
+ # Life expectancy distribution
63
+ p1 <- ggplot(df, aes(x = life_expectancy_years)) +
64
+ geom_histogram(bins = 20, fill = "skyblue", alpha = 0.7) +
65
+ labs(title = "Distribution of Life Expectancy",
66
+ x = "Life Expectancy (Years)",
67
+ y = "Count") +
68
+ theme_minimal()
69
+
70
+ # Smoking vs Life Expectancy
71
+ if (all(c("smoking_prevalence_percent", "life_expectancy_years") %in% names(df))) {
72
+ p2 <- ggplot(df, aes(x = smoking_prevalence_percent, y = life_expectancy_years)) +
73
+ geom_point(alpha = 0.6, color = "darkblue") +
74
+ geom_smooth(method = "lm", se = TRUE, color = "red") +
75
+ labs(title = "Smoking Prevalence vs Life Expectancy",
76
+ x = "Smoking Prevalence (%)",
77
+ y = "Life Expectancy (Years)") +
78
+ theme_minimal()
79
+
80
+ # Save plots
81
+ ggsave("life_expectancy_distribution.png", p1, width = 8, height = 6, dpi = 300)
82
+ ggsave("smoking_vs_life_expectancy.png", p2, width = 8, height = 6, dpi = 300)
83
+ }
84
+ }
85
+
86
+ # Run analysis
87
+ main <- function() {
88
+ cat("Loading Australian Health and Geographic Data...\n")
89
+ data <- analyse_ahgd()
90
+
91
+ cat("Creating visualisations...\n")
92
+ create_plots(data)
93
+
94
+ cat("Analysis complete!\n")
95
+ }
96
+
97
+ # Execute if run directly
98
+ if (sys.nframe() == 0) {
99
+ main()
100
+ }
examples/basic_analysis.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Example: Basic analysis of Australian Health and Geographic Data
3
+
4
+ This example demonstrates how to load and analyse the AHGD dataset
5
+ using Python and common data science libraries.
6
+ """
7
+
8
+ import pandas as pd
9
+ import matplotlib.pyplot as plt
10
+ import seaborn as sns
11
+
12
+ def load_dataset(format_type='parquet'):
13
+ """Load AHGD dataset in specified format."""
14
+ if format_type == 'parquet':
15
+ return pd.read_parquet('ahgd_data.parquet')
16
+ elif format_type == 'csv':
17
+ return pd.read_csv('ahgd_data.csv')
18
+ elif format_type == 'json':
19
+ import json
20
+ with open('ahgd_data.json', 'r') as f:
21
+ data = json.load(f)
22
+ return pd.DataFrame(data['data'])
23
+ else:
24
+ raise ValueError(f"Unsupported format: {format_type}")
25
+
26
+ def basic_analysis():
27
+ """Perform basic statistical analysis."""
28
+ # Load data
29
+ df = load_dataset('parquet')
30
+
31
+ print(f"Dataset shape: {df.shape}")
32
+ print(f"Columns: {list(df.columns)}")
33
+
34
+ # Summary statistics
35
+ numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
36
+ print("\nSummary Statistics:")
37
+ print(df[numeric_cols].describe())
38
+
39
+ # State-level aggregations
40
+ if 'state_name' in df.columns and 'life_expectancy_years' in df.columns:
41
+ state_health = df.groupby('state_name').agg({
42
+ 'life_expectancy_years': 'mean',
43
+ 'smoking_prevalence_percent': 'mean',
44
+ 'obesity_prevalence_percent': 'mean'
45
+ }).round(2)
46
+
47
+ print("\nHealth Indicators by State:")
48
+ print(state_health)
49
+
50
+ return df
51
+
52
+ def create_visualisations(df):
53
+ """Create basic visualisations."""
54
+ plt.style.use('seaborn-v0_8')
55
+
56
+ # Life expectancy distribution
57
+ plt.figure(figsize=(10, 6))
58
+ plt.subplot(2, 2, 1)
59
+ df['life_expectancy_years'].hist(bins=20, alpha=0.7)
60
+ plt.title('Distribution of Life Expectancy')
61
+ plt.xlabel('Years')
62
+
63
+ # Health indicators correlation
64
+ if all(col in df.columns for col in ['life_expectancy_years', 'smoking_prevalence_percent']):
65
+ plt.subplot(2, 2, 2)
66
+ plt.scatter(df['smoking_prevalence_percent'], df['life_expectancy_years'], alpha=0.6)
67
+ plt.xlabel('Smoking Prevalence (%)')
68
+ plt.ylabel('Life Expectancy (Years)')
69
+ plt.title('Smoking vs Life Expectancy')
70
+
71
+ plt.tight_layout()
72
+ plt.savefig('ahgd_analysis.png', dpi=300, bbox_inches='tight')
73
+ plt.show()
74
+
75
+ if __name__ == "__main__":
76
+ # Run basic analysis
77
+ data = basic_analysis()
78
+
79
+ # Create visualisations
80
+ create_visualisations(data)
81
+
82
+ print("\nAnalysis complete! Check ahgd_analysis.png for visualisations.")