--- license: mit language: - en ---

Vis-IR: Unifying Search With Visualized Information Retrieval

Build Build Build Build Build

## Overview **VIRA** (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and questionanswer formats. ## Statistics There are three types of data in VIRA: caption data, query-to-screenshot (q2s) data, and screenshot+query-to-screenshot (sq2s) data. The table below provides a detailed breakdown of the data counts for each domain and type. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66164f6245336ca774679611/EXXiP6zykuQunrx30hwBt.png) ## Organization Structure The dataset is organized in the following structure: ```tree Domain/ β”œβ”€β”€ caption.jsonl: a screenshot image path and its corresponding caption β”œβ”€β”€ q2s.jsonl: a query, a positive screenshot and eight negative screenshots β”œβ”€β”€ sq2s.jsonl: a query, a query screenshot, a positive screenshot and eight negative screenshots β”œβ”€β”€ Domain.tar.gz.partaa β”œβ”€β”€ Domain.tar.gz.partab β”œβ”€β”€ Domain.tar.gz.partac ... ``` ## Download Images We have released all the images. Due to the large total size, they are split into multiple parts. You can download the images using the script below: ```bash #!/bin/bash FOLDER="Chart" # β€œNews” "PDFA" "Papers" "Product" "Readmes" "Wiki" BASE_URL="https://huggingface.co/datasets/marsh123/VIRA/resolve/main/${FOLDER}" mkdir -p "$FOLDER" cd "$FOLDER" for first in {a..z}; do for second in {a..z}; do part="${first}${second}" file="${FOLDER}.tar.gz.part${part}" url="${BASE_URL}/${file}" echo "Trying: $url" if curl --output /dev/null --silent --head --fail "$url"; then wget --continue "$url" else echo "No more parts after part${part}" break 2 fi done done echo "Merging parts..." cat "${FOLDER}.tar.gz.part"* > "${FOLDER}.tar.gz" echo "Extracting..." tar -xzvf "${FOLDER}.tar.gz" echo "Cleaning up..." rm "${FOLDER}.tar.gz.part"* rm "${FOLDER}.tar.gz" echo "βœ… Done!" ``` ## License VIRA is licensed under the [MIT License](LICENSE). ## Citation If you find this dataset useful, please cite: ``` @article{liu2025any, title={Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval}, author={Liu, Ze and Liang, Zhengyang and Zhou, Junjie and Liu, Zheng and Lian, Defu}, journal={arXiv preprint arXiv:2502.11431}, year={2025} } ```