marcosv commited on
Commit
a3a12c6
·
verified ·
1 Parent(s): a36ef1f

Upload generate_patches_dpdd.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. generate_patches_dpdd.py +203 -0
generate_patches_dpdd.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Original code: https://github.com/swz30/Restormer/blob/main/Defocus_Deblurring/generate_patches_dpdd.py
3
+ by Syed Waqas Zamir
4
+ """
5
+ ##### Data preparation file for training Restormer on the DPDD Dataset ########
6
+
7
+ import cv2
8
+ import numpy as np
9
+ from glob import glob
10
+ from natsort import natsorted
11
+ import os
12
+ from tqdm import tqdm
13
+ from copy import deepcopy
14
+ from joblib import Parallel, delayed
15
+
16
+
17
+ def shapness_measure(img_temp,kernel_size):
18
+ conv_x = cv2.Sobel(img_temp,cv2.CV_64F,1,0,ksize=kernel_size)
19
+ conv_y = cv2.Sobel(img_temp,cv2.CV_64F,0,1,ksize=kernel_size)
20
+ temp_arr_x=deepcopy(conv_x*conv_x)
21
+ temp_arr_y=deepcopy(conv_y*conv_y)
22
+ temp_sum_x_y=temp_arr_x+temp_arr_y
23
+ temp_sum_x_y=np.sqrt(temp_sum_x_y)
24
+ return np.sum(temp_sum_x_y)
25
+
26
+ def filter_patch_sharpness(patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp):
27
+ patches_src_c, patches_trg_c, patches_src_l, patches_src_r = [], [], [], []
28
+ fitnessVal_3=[]
29
+ fitnessVal_7=[]
30
+ fitnessVal_11=[]
31
+ fitnessVal_15=[]
32
+ num_of_img_patches=len(patches_trg_c_temp)
33
+ for i in range(num_of_img_patches):
34
+ fitnessVal_3.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),3))
35
+ fitnessVal_7.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),7))
36
+ fitnessVal_11.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),11))
37
+ fitnessVal_15.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),15))
38
+ fitnessVal_3=np.asarray(fitnessVal_3)
39
+ fitnessVal_7=np.asarray(fitnessVal_7)
40
+ fitnessVal_11=np.asarray(fitnessVal_11)
41
+ fitnessVal_15=np.asarray(fitnessVal_15)
42
+ fitnessVal_3=(fitnessVal_3-np.min(fitnessVal_3))/np.max((fitnessVal_3-np.min(fitnessVal_3)))
43
+ fitnessVal_7=(fitnessVal_7-np.min(fitnessVal_7))/np.max((fitnessVal_7-np.min(fitnessVal_7)))
44
+ fitnessVal_11=(fitnessVal_11-np.min(fitnessVal_11))/np.max((fitnessVal_11-np.min(fitnessVal_11)))
45
+ fitnessVal_15=(fitnessVal_15-np.min(fitnessVal_15))/np.max((fitnessVal_15-np.min(fitnessVal_15)))
46
+ fitnessVal_all=fitnessVal_3*fitnessVal_7*fitnessVal_11*fitnessVal_15
47
+
48
+ to_remove_patches_number=int(to_remove_ratio*num_of_img_patches)
49
+
50
+ for itr in range(to_remove_patches_number):
51
+ minArrInd=np.argmin(fitnessVal_all)
52
+ fitnessVal_all[minArrInd]=2
53
+ for itr in range(num_of_img_patches):
54
+ if fitnessVal_all[itr]!=2:
55
+ patches_src_c.append(patches_src_c_temp[itr])
56
+ patches_trg_c.append(patches_trg_c_temp[itr])
57
+ patches_src_l.append(patches_src_l_temp[itr])
58
+ patches_src_r.append(patches_src_r_temp[itr])
59
+
60
+ return patches_src_c, patches_trg_c, patches_src_l, patches_src_r
61
+
62
+ def slice_stride(_img_src_c, _img_trg_c, _img_src_l, _img_src_r):
63
+ coordinates_list=[]
64
+ coordinates_list.append([0,0,0,0])
65
+ patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp = [], [], [], []
66
+ for r in range(0,_img_src_c.shape[0],stride[0]):
67
+ for c in range(0,_img_src_c.shape[1],stride[1]):
68
+ if (r+patch_size[0]) <= _img_src_c.shape[0] and (c+patch_size[1]) <= _img_src_c.shape[1]:
69
+ patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],c:c+patch_size[1]])
70
+ patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],c:c+patch_size[1]])
71
+ patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],c:c+patch_size[1]])
72
+ patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],c:c+patch_size[1]])
73
+
74
+ elif (r+patch_size[0]) <= _img_src_c.shape[0] and not ([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
75
+ patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
76
+ patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
77
+ patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
78
+ patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
79
+ coordinates_list.append([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])
80
+
81
+ elif (c+patch_size[1]) <= _img_src_c.shape[1] and not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]] in coordinates_list):
82
+ patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],c:c+patch_size[1]])
83
+ patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],c:c+patch_size[1]])
84
+ patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],c:c+patch_size[1]])
85
+ patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],c:c+patch_size[1]])
86
+ coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]])
87
+
88
+ elif not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
89
+ patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
90
+ patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
91
+ patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
92
+ patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
93
+ coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])
94
+
95
+ return patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp
96
+
97
+ def train_files(file_):
98
+ lrL_file, lrR_file, lrC_file, hrC_file = file_
99
+ filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]
100
+ lrL_img = cv2.imread(lrL_file, -1)
101
+ lrR_img = cv2.imread(lrR_file, -1)
102
+ lrC_img = cv2.imread(lrC_file, -1)
103
+ hrC_img = cv2.imread(hrC_file, -1)
104
+
105
+ lrC_patches, hrC_patches, lrL_patches, lrR_patches = slice_stride(lrC_img, hrC_img, lrL_img, lrR_img)
106
+ lrC_patches, hrC_patches, lrL_patches, lrR_patches = filter_patch_sharpness(lrC_patches, hrC_patches, lrL_patches, lrR_patches)
107
+ num_patch = 0
108
+ for lrC_patch, hrC_patch, lrL_patch, lrR_patch in zip(lrC_patches, hrC_patches, lrL_patches, lrR_patches):
109
+ num_patch += 1
110
+
111
+ lrL_savename = os.path.join(lrL_tar, filename + '-' + str(num_patch) + '.png')
112
+ lrR_savename = os.path.join(lrR_tar, filename + '-' + str(num_patch) + '.png')
113
+ lrC_savename = os.path.join(lrC_tar, filename + '-' + str(num_patch) + '.png')
114
+ hrC_savename = os.path.join(hrC_tar, filename + '-' + str(num_patch) + '.png')
115
+
116
+ cv2.imwrite(lrL_savename, lrL_patch)
117
+ cv2.imwrite(lrR_savename, lrR_patch)
118
+ cv2.imwrite(lrC_savename, lrC_patch)
119
+ cv2.imwrite(hrC_savename, hrC_patch)
120
+
121
+ def val_files(file_):
122
+ lrL_file, lrR_file, lrC_file, hrC_file = file_
123
+ filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]
124
+
125
+ lrL_savename = os.path.join(lrL_tar, filename + '.png')
126
+ lrR_savename = os.path.join(lrR_tar, filename + '.png')
127
+ lrC_savename = os.path.join(lrC_tar, filename + '.png')
128
+ hrC_savename = os.path.join(hrC_tar, filename + '.png')
129
+
130
+ lrL_img = cv2.imread(lrL_file, -1)
131
+ lrR_img = cv2.imread(lrR_file, -1)
132
+ lrC_img = cv2.imread(lrC_file, -1)
133
+ hrC_img = cv2.imread(hrC_file, -1)
134
+
135
+ w, h = lrC_img.shape[:2]
136
+
137
+ i = (w-val_patch_size)//2
138
+ j = (h-val_patch_size)//2
139
+
140
+ lrL_patch = lrL_img[i:i+val_patch_size, j:j+val_patch_size,:]
141
+ lrR_patch = lrR_img[i:i+val_patch_size, j:j+val_patch_size,:]
142
+ lrC_patch = lrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
143
+ hrC_patch = hrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
144
+
145
+ cv2.imwrite(lrL_savename, lrL_patch)
146
+ cv2.imwrite(lrR_savename, lrR_patch)
147
+ cv2.imwrite(lrC_savename, lrC_patch)
148
+ cv2.imwrite(hrC_savename, hrC_patch)
149
+
150
+
151
+ ############ Prepare Training data ####################
152
+ num_cores = 10
153
+ src = 'DPDD/train/'
154
+ tar = 'train-dpdd'
155
+
156
+ lrL_tar = os.path.join(tar, 'inputL_crops')
157
+ lrR_tar = os.path.join(tar, 'inputR_crops')
158
+ lrC_tar = os.path.join(tar, 'inputC_crops')
159
+ hrC_tar = os.path.join(tar, 'target_crops')
160
+
161
+ os.makedirs(lrL_tar, exist_ok=True)
162
+ os.makedirs(lrR_tar, exist_ok=True)
163
+ os.makedirs(lrC_tar, exist_ok=True)
164
+ os.makedirs(hrC_tar, exist_ok=True)
165
+
166
+ lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
167
+ lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
168
+ lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
169
+ hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))
170
+
171
+ files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]
172
+
173
+ patch_size = [512, 512]
174
+ stride = [204, 204]
175
+ p_max = 0
176
+ to_remove_ratio = 0.3
177
+
178
+ Parallel(n_jobs=num_cores)(delayed(train_files)(file_) for file_ in tqdm(files))
179
+
180
+
181
+ ############ Prepare validation data ####################
182
+ val_patch_size = 256
183
+ src = 'DPDD/test'
184
+ tar = 'test-dpdd'
185
+
186
+ lrL_tar = os.path.join(tar, 'inputL_crops')
187
+ lrR_tar = os.path.join(tar, 'inputR_crops')
188
+ lrC_tar = os.path.join(tar, 'inputC_crops')
189
+ hrC_tar = os.path.join(tar, 'target_crops')
190
+
191
+ os.makedirs(lrL_tar, exist_ok=True)
192
+ os.makedirs(lrR_tar, exist_ok=True)
193
+ os.makedirs(lrC_tar, exist_ok=True)
194
+ os.makedirs(hrC_tar, exist_ok=True)
195
+
196
+ lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
197
+ lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
198
+ lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
199
+ hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))
200
+
201
+ files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]
202
+
203
+ Parallel(n_jobs=num_cores)(delayed(val_files)(file_) for file_ in tqdm(files))