Upload generate_patches_dpdd.py with huggingface_hub
Browse files- generate_patches_dpdd.py +203 -0
generate_patches_dpdd.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Original code: https://github.com/swz30/Restormer/blob/main/Defocus_Deblurring/generate_patches_dpdd.py
|
3 |
+
by Syed Waqas Zamir
|
4 |
+
"""
|
5 |
+
##### Data preparation file for training Restormer on the DPDD Dataset ########
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
from glob import glob
|
10 |
+
from natsort import natsorted
|
11 |
+
import os
|
12 |
+
from tqdm import tqdm
|
13 |
+
from copy import deepcopy
|
14 |
+
from joblib import Parallel, delayed
|
15 |
+
|
16 |
+
|
17 |
+
def shapness_measure(img_temp,kernel_size):
|
18 |
+
conv_x = cv2.Sobel(img_temp,cv2.CV_64F,1,0,ksize=kernel_size)
|
19 |
+
conv_y = cv2.Sobel(img_temp,cv2.CV_64F,0,1,ksize=kernel_size)
|
20 |
+
temp_arr_x=deepcopy(conv_x*conv_x)
|
21 |
+
temp_arr_y=deepcopy(conv_y*conv_y)
|
22 |
+
temp_sum_x_y=temp_arr_x+temp_arr_y
|
23 |
+
temp_sum_x_y=np.sqrt(temp_sum_x_y)
|
24 |
+
return np.sum(temp_sum_x_y)
|
25 |
+
|
26 |
+
def filter_patch_sharpness(patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp):
|
27 |
+
patches_src_c, patches_trg_c, patches_src_l, patches_src_r = [], [], [], []
|
28 |
+
fitnessVal_3=[]
|
29 |
+
fitnessVal_7=[]
|
30 |
+
fitnessVal_11=[]
|
31 |
+
fitnessVal_15=[]
|
32 |
+
num_of_img_patches=len(patches_trg_c_temp)
|
33 |
+
for i in range(num_of_img_patches):
|
34 |
+
fitnessVal_3.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),3))
|
35 |
+
fitnessVal_7.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),7))
|
36 |
+
fitnessVal_11.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),11))
|
37 |
+
fitnessVal_15.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),15))
|
38 |
+
fitnessVal_3=np.asarray(fitnessVal_3)
|
39 |
+
fitnessVal_7=np.asarray(fitnessVal_7)
|
40 |
+
fitnessVal_11=np.asarray(fitnessVal_11)
|
41 |
+
fitnessVal_15=np.asarray(fitnessVal_15)
|
42 |
+
fitnessVal_3=(fitnessVal_3-np.min(fitnessVal_3))/np.max((fitnessVal_3-np.min(fitnessVal_3)))
|
43 |
+
fitnessVal_7=(fitnessVal_7-np.min(fitnessVal_7))/np.max((fitnessVal_7-np.min(fitnessVal_7)))
|
44 |
+
fitnessVal_11=(fitnessVal_11-np.min(fitnessVal_11))/np.max((fitnessVal_11-np.min(fitnessVal_11)))
|
45 |
+
fitnessVal_15=(fitnessVal_15-np.min(fitnessVal_15))/np.max((fitnessVal_15-np.min(fitnessVal_15)))
|
46 |
+
fitnessVal_all=fitnessVal_3*fitnessVal_7*fitnessVal_11*fitnessVal_15
|
47 |
+
|
48 |
+
to_remove_patches_number=int(to_remove_ratio*num_of_img_patches)
|
49 |
+
|
50 |
+
for itr in range(to_remove_patches_number):
|
51 |
+
minArrInd=np.argmin(fitnessVal_all)
|
52 |
+
fitnessVal_all[minArrInd]=2
|
53 |
+
for itr in range(num_of_img_patches):
|
54 |
+
if fitnessVal_all[itr]!=2:
|
55 |
+
patches_src_c.append(patches_src_c_temp[itr])
|
56 |
+
patches_trg_c.append(patches_trg_c_temp[itr])
|
57 |
+
patches_src_l.append(patches_src_l_temp[itr])
|
58 |
+
patches_src_r.append(patches_src_r_temp[itr])
|
59 |
+
|
60 |
+
return patches_src_c, patches_trg_c, patches_src_l, patches_src_r
|
61 |
+
|
62 |
+
def slice_stride(_img_src_c, _img_trg_c, _img_src_l, _img_src_r):
|
63 |
+
coordinates_list=[]
|
64 |
+
coordinates_list.append([0,0,0,0])
|
65 |
+
patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp = [], [], [], []
|
66 |
+
for r in range(0,_img_src_c.shape[0],stride[0]):
|
67 |
+
for c in range(0,_img_src_c.shape[1],stride[1]):
|
68 |
+
if (r+patch_size[0]) <= _img_src_c.shape[0] and (c+patch_size[1]) <= _img_src_c.shape[1]:
|
69 |
+
patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],c:c+patch_size[1]])
|
70 |
+
patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],c:c+patch_size[1]])
|
71 |
+
patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],c:c+patch_size[1]])
|
72 |
+
patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],c:c+patch_size[1]])
|
73 |
+
|
74 |
+
elif (r+patch_size[0]) <= _img_src_c.shape[0] and not ([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
|
75 |
+
patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
|
76 |
+
patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
|
77 |
+
patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
|
78 |
+
patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
|
79 |
+
coordinates_list.append([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])
|
80 |
+
|
81 |
+
elif (c+patch_size[1]) <= _img_src_c.shape[1] and not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]] in coordinates_list):
|
82 |
+
patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],c:c+patch_size[1]])
|
83 |
+
patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],c:c+patch_size[1]])
|
84 |
+
patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],c:c+patch_size[1]])
|
85 |
+
patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],c:c+patch_size[1]])
|
86 |
+
coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]])
|
87 |
+
|
88 |
+
elif not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
|
89 |
+
patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
|
90 |
+
patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
|
91 |
+
patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
|
92 |
+
patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
|
93 |
+
coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])
|
94 |
+
|
95 |
+
return patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp
|
96 |
+
|
97 |
+
def train_files(file_):
|
98 |
+
lrL_file, lrR_file, lrC_file, hrC_file = file_
|
99 |
+
filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]
|
100 |
+
lrL_img = cv2.imread(lrL_file, -1)
|
101 |
+
lrR_img = cv2.imread(lrR_file, -1)
|
102 |
+
lrC_img = cv2.imread(lrC_file, -1)
|
103 |
+
hrC_img = cv2.imread(hrC_file, -1)
|
104 |
+
|
105 |
+
lrC_patches, hrC_patches, lrL_patches, lrR_patches = slice_stride(lrC_img, hrC_img, lrL_img, lrR_img)
|
106 |
+
lrC_patches, hrC_patches, lrL_patches, lrR_patches = filter_patch_sharpness(lrC_patches, hrC_patches, lrL_patches, lrR_patches)
|
107 |
+
num_patch = 0
|
108 |
+
for lrC_patch, hrC_patch, lrL_patch, lrR_patch in zip(lrC_patches, hrC_patches, lrL_patches, lrR_patches):
|
109 |
+
num_patch += 1
|
110 |
+
|
111 |
+
lrL_savename = os.path.join(lrL_tar, filename + '-' + str(num_patch) + '.png')
|
112 |
+
lrR_savename = os.path.join(lrR_tar, filename + '-' + str(num_patch) + '.png')
|
113 |
+
lrC_savename = os.path.join(lrC_tar, filename + '-' + str(num_patch) + '.png')
|
114 |
+
hrC_savename = os.path.join(hrC_tar, filename + '-' + str(num_patch) + '.png')
|
115 |
+
|
116 |
+
cv2.imwrite(lrL_savename, lrL_patch)
|
117 |
+
cv2.imwrite(lrR_savename, lrR_patch)
|
118 |
+
cv2.imwrite(lrC_savename, lrC_patch)
|
119 |
+
cv2.imwrite(hrC_savename, hrC_patch)
|
120 |
+
|
121 |
+
def val_files(file_):
|
122 |
+
lrL_file, lrR_file, lrC_file, hrC_file = file_
|
123 |
+
filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]
|
124 |
+
|
125 |
+
lrL_savename = os.path.join(lrL_tar, filename + '.png')
|
126 |
+
lrR_savename = os.path.join(lrR_tar, filename + '.png')
|
127 |
+
lrC_savename = os.path.join(lrC_tar, filename + '.png')
|
128 |
+
hrC_savename = os.path.join(hrC_tar, filename + '.png')
|
129 |
+
|
130 |
+
lrL_img = cv2.imread(lrL_file, -1)
|
131 |
+
lrR_img = cv2.imread(lrR_file, -1)
|
132 |
+
lrC_img = cv2.imread(lrC_file, -1)
|
133 |
+
hrC_img = cv2.imread(hrC_file, -1)
|
134 |
+
|
135 |
+
w, h = lrC_img.shape[:2]
|
136 |
+
|
137 |
+
i = (w-val_patch_size)//2
|
138 |
+
j = (h-val_patch_size)//2
|
139 |
+
|
140 |
+
lrL_patch = lrL_img[i:i+val_patch_size, j:j+val_patch_size,:]
|
141 |
+
lrR_patch = lrR_img[i:i+val_patch_size, j:j+val_patch_size,:]
|
142 |
+
lrC_patch = lrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
|
143 |
+
hrC_patch = hrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
|
144 |
+
|
145 |
+
cv2.imwrite(lrL_savename, lrL_patch)
|
146 |
+
cv2.imwrite(lrR_savename, lrR_patch)
|
147 |
+
cv2.imwrite(lrC_savename, lrC_patch)
|
148 |
+
cv2.imwrite(hrC_savename, hrC_patch)
|
149 |
+
|
150 |
+
|
151 |
+
############ Prepare Training data ####################
|
152 |
+
num_cores = 10
|
153 |
+
src = 'DPDD/train/'
|
154 |
+
tar = 'train-dpdd'
|
155 |
+
|
156 |
+
lrL_tar = os.path.join(tar, 'inputL_crops')
|
157 |
+
lrR_tar = os.path.join(tar, 'inputR_crops')
|
158 |
+
lrC_tar = os.path.join(tar, 'inputC_crops')
|
159 |
+
hrC_tar = os.path.join(tar, 'target_crops')
|
160 |
+
|
161 |
+
os.makedirs(lrL_tar, exist_ok=True)
|
162 |
+
os.makedirs(lrR_tar, exist_ok=True)
|
163 |
+
os.makedirs(lrC_tar, exist_ok=True)
|
164 |
+
os.makedirs(hrC_tar, exist_ok=True)
|
165 |
+
|
166 |
+
lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
|
167 |
+
lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
|
168 |
+
lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
|
169 |
+
hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))
|
170 |
+
|
171 |
+
files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]
|
172 |
+
|
173 |
+
patch_size = [512, 512]
|
174 |
+
stride = [204, 204]
|
175 |
+
p_max = 0
|
176 |
+
to_remove_ratio = 0.3
|
177 |
+
|
178 |
+
Parallel(n_jobs=num_cores)(delayed(train_files)(file_) for file_ in tqdm(files))
|
179 |
+
|
180 |
+
|
181 |
+
############ Prepare validation data ####################
|
182 |
+
val_patch_size = 256
|
183 |
+
src = 'DPDD/test'
|
184 |
+
tar = 'test-dpdd'
|
185 |
+
|
186 |
+
lrL_tar = os.path.join(tar, 'inputL_crops')
|
187 |
+
lrR_tar = os.path.join(tar, 'inputR_crops')
|
188 |
+
lrC_tar = os.path.join(tar, 'inputC_crops')
|
189 |
+
hrC_tar = os.path.join(tar, 'target_crops')
|
190 |
+
|
191 |
+
os.makedirs(lrL_tar, exist_ok=True)
|
192 |
+
os.makedirs(lrR_tar, exist_ok=True)
|
193 |
+
os.makedirs(lrC_tar, exist_ok=True)
|
194 |
+
os.makedirs(hrC_tar, exist_ok=True)
|
195 |
+
|
196 |
+
lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
|
197 |
+
lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
|
198 |
+
lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
|
199 |
+
hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))
|
200 |
+
|
201 |
+
files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]
|
202 |
+
|
203 |
+
Parallel(n_jobs=num_cores)(delayed(val_files)(file_) for file_ in tqdm(files))
|