--- version: 1.0.2 language: en license: gpl-3.0 size_categories: - 1M>> import datasets and load one of the `Molecule3D` datasets, e.g., >>> Molecule3D = datasets.load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well README.md: 100% 4.95k/4.95k [00:00<00:00, 559kB/s] Generating train split: 100% 2339788/2339788 [00:34<00:00, 85817.85 examples/s] Generating test split: 100% 779930/779930 [00:15<00:00, 96660.33 examples/s] Generating validation split:  100% 779929/779929 [00:09<00:00, 79064.99 examples/s] and inspecting the dataset >>> Molecule3D DatasetDict({ train: Dataset({ features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], num_rows: 2339788 }) test: Dataset({ features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], num_rows: 779930 }) validation: Dataset({ features: ['index', 'SMILES', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'Y', 'scf energy'], num_rows: 779929 }) }) ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite split_dataset = load_dataset('maomlab/Molecule3D', name = 'Molecule3D_random_split') # can put 'Molecule3D_scaffold_split' for the name as well split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_regressor", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['Y']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) regression_suite = load_suite("regression") scores = regression_suite.compute( references=split_featurised_dataset["test"]['Y'], predictions=preds["cat_boost_regressor::Y"]) ## Citation @misc{https://doi.org/10.48550/arxiv.2110.01717, doi = {10.48550/ARXIV.2110.01717}, url = {https://arxiv.org/abs/2110.01717}, author = {Xu, Zhao and Luo, Youzhi and Zhang, Xuan and Xu, Xinyi and Xie, Yaochen and Liu, Meng and Dickerson, Kaleb and Deng, Cheng and Nakata, Maho and Ji, Shuiwang}, keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs}, publisher = {arXiv}, year = {2021}, copyright = {arXiv.org perpetual, non-exclusive license} }