Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,115 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- bacformer
|
5 |
+
- genomics
|
6 |
+
- genome
|
7 |
+
- bacteria
|
8 |
+
- protein
|
9 |
+
- phenotype
|
10 |
+
- prokaryotes
|
11 |
+
pretty_name: Bacformer genome embeddings with phenotypic traits labels dataset
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
---
|
15 |
+
|
16 |
+
# Dataset for predicting phenotypic traits labels using Bacformer embeddings
|
17 |
+
|
18 |
+
A dataset containing Bacformer embeddings for a set of almost `25k` unique genomes downloaded from [NCBI GenBank](https://www.ncbi.nlm.nih.gov/genbank/)
|
19 |
+
with associated phenotypic trait labels.
|
20 |
+
|
21 |
+
The phenotypic traits have been extracted from a number of sources [1, 2, 3] and include a diversity of categorical phenotypes. We exclude phenotypic
|
22 |
+
traits with a low nr of samples, giving us 139 uniqe phenotypic traits.
|
23 |
+
If the same or similar label appeared in two different sources, we kept it as separate labels as the label collection setup may differ for the labels.
|
24 |
+
|
25 |
+
The Bacformer embeddings have been computed by running [macwiatrak/bacformer-masked-complete-genomes](https://huggingface.co/macwiatrak/bacformer-masked-complete-genomes/edit/main/README.md)
|
26 |
+
in inference mode and averaging the contextual protein embeddings to get a genome embedding.
|
27 |
+
|
28 |
+
For more info on how to embed genomes with Bacformer see github - https://github.com/macwiatrak/Bacformer.
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
See the tutorial on predicting the phenotypic traits with Bacformer - [tutorial link](https://github.com/macwiatrak/Bacformer/blob/main/tutorials/phenotypic_traits_prediction_tutorial.ipynb).
|
33 |
+
|
34 |
+
### Code snippet on how to train a linear regression model for a phenotype
|
35 |
+
|
36 |
+
```python
|
37 |
+
import numpy as np
|
38 |
+
import pandas as pd
|
39 |
+
from datasets import load_dataset
|
40 |
+
|
41 |
+
from sklearn.model_selection import train_test_split
|
42 |
+
from sklearn.metrics import roc_auc_score
|
43 |
+
from sklearn.linear_model import LogisticRegression
|
44 |
+
from sklearn.preprocessing import StandardScaler
|
45 |
+
from sklearn.pipeline import Pipeline
|
46 |
+
|
47 |
+
|
48 |
+
# load the dataset and convert to pandas DF
|
49 |
+
df = load_dataset("macwiatrak/bacformer-genome-embeddings-with-phenotypic-traits-labels", split="train").to_pandas()
|
50 |
+
|
51 |
+
# select the phenotype
|
52 |
+
phenotype = "gideon_Catalase"
|
53 |
+
# remove the genomes with NaN values for the phenotype of interest
|
54 |
+
phenotype_df = df[df[phenotype].notna()].copy()
|
55 |
+
|
56 |
+
|
57 |
+
# ------------------------------------------------------------------
|
58 |
+
# 2 60 / 20 / 20 stratified split (train → 0.6, val → 0.2, test → 0.2)
|
59 |
+
# ------------------------------------------------------------------
|
60 |
+
X_train_val, X_test, y_train_val, y_test = train_test_split(
|
61 |
+
X, y, test_size=0.20, random_state=42, stratify=y
|
62 |
+
)
|
63 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
64 |
+
X_train_val, y_train_val,
|
65 |
+
test_size=0.25, # 0.25 × 0.80 = 0.20
|
66 |
+
random_state=42,
|
67 |
+
stratify=y_train_val
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
# ------------------------------------------------------------------
|
72 |
+
# 3 Hyper-parameter search on validation set
|
73 |
+
# ------------------------------------------------------------------
|
74 |
+
param_grid = np.logspace(-4, 4, 9) # 1e-4 … 1e4
|
75 |
+
best_auc, best_C, best_model = -np.inf, None, None
|
76 |
+
|
77 |
+
for C in param_grid:
|
78 |
+
model = Pipeline(
|
79 |
+
steps=[
|
80 |
+
("scale", StandardScaler()),
|
81 |
+
("clf", LogisticRegression(
|
82 |
+
C=C, solver="liblinear", max_iter=2000, penalty="l2"
|
83 |
+
))
|
84 |
+
]
|
85 |
+
)
|
86 |
+
model.fit(X_train, y_train)
|
87 |
+
|
88 |
+
val_probs = model.predict_proba(X_val)[:, 1]
|
89 |
+
auc = roc_auc_score(y_val, val_probs)
|
90 |
+
|
91 |
+
if auc > best_auc:
|
92 |
+
best_auc, best_C, best_model = auc, C, model
|
93 |
+
|
94 |
+
print(f"Best C on validation: {best_C} | AUROC_val = {best_auc:.4f}")
|
95 |
+
|
96 |
+
|
97 |
+
# ------------------------------------------------------------------
|
98 |
+
# 4 Final evaluation on the held-out test set
|
99 |
+
# ------------------------------------------------------------------
|
100 |
+
test_probs = best_model.predict_proba(X_test)[:, 1]
|
101 |
+
test_auc = roc_auc_score(y_test, test_probs)
|
102 |
+
|
103 |
+
print(f"AUROC_test = {test_auc:.4f}")
|
104 |
+
```
|
105 |
+
|
106 |
+
## Contact
|
107 |
+
In case of questions/issues or feature requests please raise an issue on github - https://github.com/macwiatrak/Bacformer.
|
108 |
+
|
109 |
+
## References
|
110 |
+
|
111 |
+
[1] Madin, Joshua S., et al. "A synthesis of bacterial and archaeal phenotypic trait data." Scientific data 7.1 (2020): 170.
|
112 |
+
|
113 |
+
[2] Weimann, Aaron, et al. "From genomes to phenotypes: Traitar, the microbial trait analyzer." MSystems 1.6 (2016): 10-1128.
|
114 |
+
|
115 |
+
[3] Brbić, Maria, et al. "The landscape of microbial phenotypic traits and associated genes." Nucleic acids research (2016): gkw964.
|