---
dataset_info:
- config_name: ancestry_prediction
features:
- name: sequence
dtype: string
- name: id
dtype: string
- name: start_idx
dtype: int64
- name: chromosome
dtype: string
- name: variants
dtype: string
- name: parents
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 914858176
num_examples: 14085
download_size: 298355655
dataset_size: 914858176
- config_name: coding_pathogenicity
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: float64
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 353452168
num_examples: 82872
download_size: 128733817
dataset_size: 353452168
- config_name: common_vs_rare
features:
- name: ref_forward_sequence
dtype: string
- name: alt_forward_sequence
dtype: string
- name: label
dtype: int8
- name: chromosome
dtype: string
- name: position
dtype: int32
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 1239819384
num_examples: 200000
download_size: 542989051
dataset_size: 1239819384
- config_name: expression
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: int64
- name: chrom
dtype: string
- name: deepsea_label
dtype: string
splits:
- name: train
num_bytes: 650249506
num_examples: 156162
download_size: 270672126
dataset_size: 650249506
- config_name: meqtl
features:
- name: label
dtype: int8
- name: chromosome
dtype: string
- name: position
dtype: int32
- name: uid
dtype: string
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: chrom
dtype: string
splits:
- name: train
num_bytes: 318695785
num_examples: 76488
download_size: 134361097
dataset_size: 318695785
- config_name: non_coding_pathogenicity
features:
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
- name: label
dtype: int64
- name: chrom
dtype: string
- name: vep
dtype: string
splits:
- name: train
num_bytes: 1265476277
num_examples: 295495
download_size: 442285117
dataset_size: 1265476277
- config_name: sqtl
features:
- name: geneId
dtype: string
- name: snpId
dtype: string
- name: pv
dtype: float64
- name: label
dtype: int64
- name: tissue
dtype: string
- name: __index_level_0__
dtype: int64
- name: chrom
dtype: string
- name: pos
dtype: int64
- name: ref_allele
dtype: string
- name: alt_allele
dtype: string
- name: alt_left
dtype: string
- name: alt_right
dtype: string
- name: ref_left
dtype: string
- name: ref_right
dtype: string
splits:
- name: train
num_bytes: 4501372944
num_examples: 1055241
download_size: 1855898562
dataset_size: 4501372944
configs:
- config_name: ancestry_prediction
data_files:
- split: train
path: ancestry_prediction/train-*
- config_name: coding_pathogenicity
data_files:
- split: train
path: coding_pathogenicity/train-*
- config_name: common_vs_rare
data_files:
- split: train
path: common_vs_rare/train-*
- config_name: expression
data_files:
- split: train
path: expression/train-*
- config_name: meqtl
data_files:
- split: train
path: meqtl/train-*
- config_name: non_coding_pathogenicity
data_files:
- split: train
path: non_coding_pathogenicity/train-*
- config_name: sqtl
data_files:
- split: train
path: sqtl/train-*
tags:
- gfm
- genomics
- dna
- genomic foundation model
- m42
- BioFM
- BioToken
- Variant
license: cc-by-nc-4.0
task_categories:
- text-classification
pretty_name: variant-benchmark
size_categories:
- 1M
Accurate prediction of pathogenic coding variants is fundamental to precision medicine and clinical genomics.
For this task, we use the [AlphaMissense](https://github.com/google-deepmind/alphamissense) dataset, which provides a comprehensive catalog of coding variants annotated for pathogenicity.
- **Noncoding pathogenicity assessment:** `subset: non_coding_pathogenicity`
Pathogenic variants in noncoding regions significantly impact gene regulation, influencing many complex traits and diseases.
We assess this using the [BEND dataset](https://github.com/frederikkemarin/BEND), which contains 295,000 annotated single-nucleotide variants (SNVs) in noncoding genomic regions.
- **Expression effect prediction:** `subset: expression`
Variant-driven changes in gene expression contribute to phenotypic diversity and disease processes.
To quantify these effects, we use gene expression data from [DeepSea](https://www.nature.com/articles/nmeth.3547), which provides variant-associated regulatory annotations.
- **Alternative splicing:** `subset: sqtl`
Variant-induced alternative splicing contributes significantly to human proteomic diversity and affects biological processes and diseases.
We evaluate splicing-related variant effects using an [sQTL dataset](https://www.nature.com/articles/s41467-020-20578-2) derived from sqtlSeeker2, containing over one million variant-tissue pairs.
- **DNA methylation:** `subset: meqtl`
Genomic variants can influence DNA methylation patterns, affecting gene regulation and disease susceptibility.
For this task, we utilize meQTL data from the [GRASP database](https://pubmed.ncbi.nlm.nih.gov/24931982/), which links genetic variants to methylation changes.
- **Ancestry classification:** `subset: ancestry_prediction`
Genomic variation encodes population structure, informing studies in evolutionary biology and disease susceptibility.
To evaluate this capability, we used genomic segments labeled by five major superpopulations from the 1000 Genomes Project.
- **Common vs synthetic variants:** `subset: common_vs_rare`
This task evaluates the model’s ability to recognize biologically conserved genomic contexts characteristic of authentic common variants.
To create this deataset, we randomly sampled 100K common variants (MAF > 0.05) from GnomAD~\citep{chen2024gnomad} and paired each with a synthetic control variant generated by randomly substituting a nucleotide within a ±20-nucleotide local context window.
## Citation
```
@article {Medvedev2025.03.27.645711,
author = {Medvedev, Aleksandr and Viswanathan, Karthik and Kanithi, Praveenkumar and Vishniakov, Kirill and Munjal, Prateek and Christophe, Clement and Pimentel, Marco AF and Rajan, Ronnie and Khan, Shadab},
title = {BioToken and BioFM - Biologically-Informed Tokenization Enables Accurate and Efficient Genomic Foundation Models},
elocation-id = {2025.03.27.645711},
year = {2025},
doi = {10.1101/2025.03.27.645711},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2025/04/01/2025.03.27.645711},
eprint = {https://www.biorxiv.org/content/early/2025/04/01/2025.03.27.645711.full.pdf},
journal = {bioRxiv}
}
```