Datasets:
File size: 30,322 Bytes
2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 0c0a1bc 2fc54f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 86,
"id": "7821c501-8c5d-4af6-81cd-caa6ad0bd58c",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset, DatasetDict\n",
"from datasets import concatenate_datasets\n",
"from IPython.display import HTML\n",
"\n",
"from tqdm import tqdm\n",
"import re \n",
"import numpy as np\n",
"from markdownify import markdownify as md"
]
},
{
"cell_type": "code",
"execution_count": 80,
"id": "dc821970-efdb-407f-bd79-59da09323280",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset parquet (/home/leandro/.cache/huggingface/datasets/HuggingFaceH4___parquet/HuggingFaceH4--stack-exchange-preferences-1d2bff9ecb5ffe2a/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
]
},
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata'],\n",
" num_rows: 10807695\n",
"})"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds = load_dataset(\"HuggingFaceH4/stack-exchange-preferences\", split=\"train\", num_proc=16)\n",
"ds"
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "0d8d8729-6d6b-4791-a24a-cb112c399bd0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<p>I have been wanting to learn about 3D printing a long time so I really want this site to succeed but I have no previous experience with the subject. </p>\n",
"\n",
"<p>I was wondering how can I help the site at this early stage. I thought about asking about how to get started with 3D printing but SE explicitly discourages \"easy\" questions in the private beta.</p>\n",
"\n",
"<p>What can newbies like me do for the site at this stage besides voting questions and answers?</p>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(ds[0][\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": 82,
"id": "b3b60caa-3bd9-4033-ab1c-90c5b08ef3ec",
"metadata": {},
"outputs": [],
"source": [
"def lang_callback(el):\n",
" lang = el['class'][0] if el.has_attr('class') else None\n",
" \n",
" if not lang is None:\n",
" lang = lang.split(\"-\")[-1]\n",
" return lang"
]
},
{
"cell_type": "code",
"execution_count": 83,
"id": "de1123a0-7468-4d13-a8d3-4011ace36c3c",
"metadata": {},
"outputs": [],
"source": [
"def html2md(text):\n",
" text = md(text, code_language_callback=lang_callback)\n",
" text = re.sub(r\"\\n\\s*\\n\", \"\\n\\n\", text).strip()\n",
" return text.encode('utf-8', 'replace').decode()"
]
},
{
"cell_type": "code",
"execution_count": 84,
"id": "c9da64a0-c753-4d35-9369-b70a7a9fa2f9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I have been wanting to learn about 3D printing a long time so I really want this site to succeed but I have no previous experience with the subject. \n",
"\n",
"I was wondering how can I help the site at this early stage. I thought about asking about how to get started with 3D printing but SE explicitly discourages \"easy\" questions in the private beta.\n",
"\n",
"What can newbies like me do for the site at this stage besides voting questions and answers?\n",
"====================\n"
]
}
],
"source": [
"for i in range(1):\n",
" text = html2md(ds[i][\"question\"])\n",
" print(text)\n",
" print(\"==\"*10)"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "3bf33a2f-fed5-49e7-8046-e813ad172b17",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"49.935"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.mean([len(ds[i][\"answers\"])*(len(ds[i][\"answers\"])-1)/2 for i in range(10000)])"
]
},
{
"cell_type": "code",
"execution_count": 87,
"id": "88ea2dd5-b885-4f65-bae3-1319c7816044",
"metadata": {},
"outputs": [],
"source": [
"ds = ds.shuffle(seed=42)\n",
"index = list(range(len(ds)))\n",
"\n",
"ds_splits = DatasetDict({\n",
" \"finetune\": ds.select(index[:3_000_000]),\n",
" \"reward\": ds.select(index[3_000_000:6_000_000]),\n",
" \"rl\": ds.select(index[6_000_000:9_000_000]),\n",
" \"evaluation\": ds.select(index[9_000_000:]),\n",
"})"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "1607922d-f585-4de7-be70-2205b5170102",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" finetune: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata'],\n",
" num_rows: 3000000\n",
" })\n",
" reward: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata'],\n",
" num_rows: 3000000\n",
" })\n",
" rl: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata'],\n",
" num_rows: 3000000\n",
" })\n",
" evaluation: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata'],\n",
" num_rows: 1807695\n",
" })\n",
"})"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_splits"
]
},
{
"cell_type": "code",
"execution_count": 89,
"id": "edc8af18-94a5-49e9-ae73-ce4ba81d9739",
"metadata": {},
"outputs": [],
"source": [
"def binary_comparison(answers):\n",
" \"\"\"Returns tuples of answers, first always best\"\"\"\n",
" pairs = []\n",
" \n",
" for i in range(len(answers)-1):\n",
" for j in range(i+1, len(answers)):\n",
" if answers[i][\"pm_score\"]>answers[j][\"pm_score\"]:\n",
" pairs.append((answers[i][\"text\"], answers[j][\"text\"]))\n",
" elif answers[i][\"pm_score\"]<answers[j][\"pm_score\"]:\n",
" pairs.append((answers[j][\"text\"], answers[i][\"text\"]))\n",
" return pairs"
]
},
{
"cell_type": "code",
"execution_count": 90,
"id": "88afe90e-364e-4b21-898b-1c6ceb9cfd32",
"metadata": {},
"outputs": [],
"source": [
"def preprocess(examples):\n",
" \"\"\"Cleans HTML and returns paired answers (j is better than k). Note that this returns more examples (one for each pair per question).\"\"\"\n",
" \n",
" MAX_PAIRS_PER_QUESTION = 10\n",
" n_samples = len(examples[\"qid\"])\n",
" \n",
" # initialize empty lists for new samples\n",
" new_examples = {\"question\": [], \"response_j\": [], \"response_k\": []}\n",
" for key in examples:\n",
" new_examples[key] = []\n",
" \n",
" for sample_id in range(n_samples):\n",
" # get pairs where first is always the better one\n",
" pairs = binary_comparison(examples[\"answers\"][sample_id])\n",
" n_answers = len(examples[\"answers\"][sample_id])\n",
" \n",
" # sample if we get more pairs than maximum\n",
" if len(pairs) > MAX_PAIRS_PER_QUESTION:\n",
" indices = np.random.choice(list(range(len(pairs))), MAX_PAIRS_PER_QUESTION, replace=False)\n",
" pairs = [pairs[i] for i in indices]\n",
" \n",
" # construct the samples\n",
" for pair in pairs:\n",
" for key in examples:\n",
" if key==\"question\":\n",
" new_examples[key].append(html2md(examples[key][sample_id]))\n",
" else:\n",
" new_examples[key].append(examples[key][sample_id])\n",
" new_examples[\"response_j\"].append(html2md(pair[0]))\n",
" new_examples[\"response_k\"].append(html2md(pair[1]))\n",
" return new_examples"
]
},
{
"cell_type": "code",
"execution_count": 91,
"id": "ac06aac5-3953-4321-9f1e-6ff210bee82d",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map (num_proc=60): 0%| | 0/3000000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map (num_proc=60): 0%| | 0/3000000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map (num_proc=60): 0%| | 0/3000000 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n",
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n",
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Map (num_proc=60): 0%| | 0/1807695 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/envs/jupyter/lib/python3.8/site-packages/bs4/__init__.py:435: MarkupResemblesLocatorWarning: The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.\n",
" warnings.warn(\n"
]
}
],
"source": [
"ds_result = ds_splits.map(preprocess, batch_size=1000, batched=True, num_proc=60)"
]
},
{
"cell_type": "code",
"execution_count": 92,
"id": "06e3d891-ffde-4762-95d5-39658a1127ef",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" finetune: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7440923\n",
" })\n",
" reward: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7441998\n",
" })\n",
" rl: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7435908\n",
" })\n",
" evaluation: Dataset({\n",
" features: ['qid', 'question', 'answers', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 4483004\n",
" })\n",
"})"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_result"
]
},
{
"cell_type": "code",
"execution_count": 93,
"id": "631416dc-cf19-485d-a2f3-94c9b2cb2bfc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'qid': 12891264,\n",
" 'question': \"I am using jQuery fileupload plugin and I want to do some custom jQuery stuff once fileupload is done\\n\\nfrom here <https://github.com/blueimp/jQuery-File-Upload/wiki/Options>\\n\\nNow it says this\\n\\n```\\nCallback for successful upload requests.\\n$('#fileupload')\\n .bind('fileuploaddone', function (e, data) {/* ... */})\\n\\n```\\n\\nNow I have defined this custom function for testing in my own js file\\n\\n```\\n$('#fileupload').bind('fileuploaddone', function (e, data) {/* ... */\\nalert('Hello');\\n})\\n\\n```\\n\\nBut it's not working.\\n\\nBut if I edit the main file in here\\n\\n```\\n // Callback for successful uploads:\\n done: function (e, data) {\\n\\n```\\n\\nThen it works.\",\n",
" 'answers': [{'answer_id': 12891484,\n",
" 'author': 'Reflective',\n",
" 'author_id': 1686626,\n",
" 'author_profile': 'https://Stackoverflow.com/users/1686626',\n",
" 'pm_score': 4,\n",
" 'selected': True,\n",
" 'text': \"<p>Looking at the library code, seems all events are renamed removing 'fileupload' ... so 'fileuploaddone' becomes just 'done'. It is valid for all other callbacks.\\nlook at this section:</p>\\n\\n<pre><code> // Other callbacks:\\n // Callback for the submit event of each file upload:\\n // submit: function (e, data) {}, // .bind('fileuploadsubmit', func);\\n // Callback for the start of each file upload request:\\n // send: function (e, data) {}, // .bind('fileuploadsend', func);\\n // Callback for successful uploads:\\n // done: function (e, data) {}, // .bind('fileuploaddone', func);\\n // Callback for failed (abort or error) uploads:\\n // fail: function (e, data) {}, // .bind('fileuploadfail', func);\\n // Callback for completed (success, abort or error) requests:\\n // always: function (e, data) {}, // .bind('fileuploadalways', func);\\n // Callback for upload progress events:\\n // progress: function (e, data) {}, // .bind('fileuploadprogress', func);\\n // Callback for global upload progress events:\\n // progressall: function (e, data) {}, // .bind('fileuploadprogressall', func);\\n // Callback for uploads start, equivalent to the global ajaxStart event:\\n // start: function (e) {}, // .bind('fileuploadstart', func);\\n // Callback for uploads stop, equivalent to the global ajaxStop event:\\n // stop: function (e) {}, // .bind('fileuploadstop', func);\\n // Callback for change events of the fileInput(s):\\n // change: function (e, data) {}, // .bind('fileuploadchange', func);\\n // Callback for paste events to the pasteZone(s):\\n // paste: function (e, data) {}, // .bind('fileuploadpaste', func);\\n // Callback for drop events of the dropZone(s):\\n // drop: function (e, data) {}, // .bind('fileuploaddrop', func);\\n // Callback for dragover events of the dropZone(s):\\n // dragover: function (e) {}, // .bind('fileuploaddragover', func);\\n</code></pre>\\n\\n<p>If you have some doubts about what's happening, just look at the code inside. This library is not compressed so it is easy to see. for example</p>\\n\\n<pre><code>// start: function (e) {}, // .bind('fileuploadstart', func);\\n</code></pre>\\n\\n<p><code>start</code> callback is implemented. <code>fileuploadstart</code> is not.</p>\\n\"},\n",
" {'answer_id': 15419140,\n",
" 'author': 'NXT',\n",
" 'author_id': 1554649,\n",
" 'author_profile': 'https://Stackoverflow.com/users/1554649',\n",
" 'pm_score': 3,\n",
" 'selected': False,\n",
" 'text': '<p>Check if the server-side uploading script returns a JSON reply - in my case it didn\\'t work when the reply was empty, but file was uploaded successfully.</p>\\n\\n<p>So, below is working for me with jQuery 1.9.1 and the newest version of the \"jQuery File Upload Plugin\" - 5.21.3</p>\\n\\n<pre><code>$(\"#fileupload\").bind(\"fileuploaddone\", function (e, data) {\\n console.log(\"fileuploaddone event fired\");\\n});\\n</code></pre>\\n'}],\n",
" 'date': '2012/10/15',\n",
" 'metadata': ['https://Stackoverflow.com/questions/12891264',\n",
" 'https://Stackoverflow.com',\n",
" 'https://Stackoverflow.com/users/767244/'],\n",
" 'response_j': \"Looking at the library code, seems all events are renamed removing 'fileupload' ... so 'fileuploaddone' becomes just 'done'. It is valid for all other callbacks.\\nlook at this section:\\n\\n```\\n // Other callbacks:\\n // Callback for the submit event of each file upload:\\n // submit: function (e, data) {}, // .bind('fileuploadsubmit', func);\\n // Callback for the start of each file upload request:\\n // send: function (e, data) {}, // .bind('fileuploadsend', func);\\n // Callback for successful uploads:\\n // done: function (e, data) {}, // .bind('fileuploaddone', func);\\n // Callback for failed (abort or error) uploads:\\n // fail: function (e, data) {}, // .bind('fileuploadfail', func);\\n // Callback for completed (success, abort or error) requests:\\n // always: function (e, data) {}, // .bind('fileuploadalways', func);\\n // Callback for upload progress events:\\n // progress: function (e, data) {}, // .bind('fileuploadprogress', func);\\n // Callback for global upload progress events:\\n // progressall: function (e, data) {}, // .bind('fileuploadprogressall', func);\\n // Callback for uploads start, equivalent to the global ajaxStart event:\\n // start: function (e) {}, // .bind('fileuploadstart', func);\\n // Callback for uploads stop, equivalent to the global ajaxStop event:\\n // stop: function (e) {}, // .bind('fileuploadstop', func);\\n // Callback for change events of the fileInput(s):\\n // change: function (e, data) {}, // .bind('fileuploadchange', func);\\n // Callback for paste events to the pasteZone(s):\\n // paste: function (e, data) {}, // .bind('fileuploadpaste', func);\\n // Callback for drop events of the dropZone(s):\\n // drop: function (e, data) {}, // .bind('fileuploaddrop', func);\\n // Callback for dragover events of the dropZone(s):\\n // dragover: function (e) {}, // .bind('fileuploaddragover', func);\\n\\n```\\n\\nIf you have some doubts about what's happening, just look at the code inside. This library is not compressed so it is easy to see. for example\\n\\n```\\n// start: function (e) {}, // .bind('fileuploadstart', func);\\n\\n```\\n\\n`start` callback is implemented. `fileuploadstart` is not.\",\n",
" 'response_k': 'Check if the server-side uploading script returns a JSON reply - in my case it didn\\'t work when the reply was empty, but file was uploaded successfully.\\n\\nSo, below is working for me with jQuery 1.9.1 and the newest version of the \"jQuery File Upload Plugin\" - 5.21.3\\n\\n```\\n$(\"#fileupload\").bind(\"fileuploaddone\", function (e, data) {\\n console.log(\"fileuploaddone event fired\");\\n});\\n\\n```'}"
]
},
"execution_count": 93,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_result[\"finetune\"][0]"
]
},
{
"cell_type": "code",
"execution_count": 94,
"id": "2c96653b-7a5a-4cae-a327-b6aa77aa5850",
"metadata": {},
"outputs": [],
"source": [
"ds_result = ds_result.remove_columns([\"answers\"])"
]
},
{
"cell_type": "code",
"execution_count": 95,
"id": "15c2e5ee-7c7d-4e98-9e63-e5d37a9354aa",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatasetDict({\n",
" finetune: Dataset({\n",
" features: ['qid', 'question', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7440923\n",
" })\n",
" reward: Dataset({\n",
" features: ['qid', 'question', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7441998\n",
" })\n",
" rl: Dataset({\n",
" features: ['qid', 'question', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 7435908\n",
" })\n",
" evaluation: Dataset({\n",
" features: ['qid', 'question', 'date', 'metadata', 'response_j', 'response_k'],\n",
" num_rows: 4483004\n",
" })\n",
"})"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ds_result"
]
},
{
"cell_type": "code",
"execution_count": 96,
"id": "4d42b35c-5252-4b49-ba4b-20818bc9e086",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"finetune\n",
"reward\n",
"rl\n",
"evaluation\n"
]
}
],
"source": [
"for key in ds_result:\n",
" print(key)"
]
},
{
"cell_type": "code",
"execution_count": 100,
"id": "e32c11d7-a88e-4d92-9dfc-92b2a67c5455",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import time\n",
"from multiprocessing import Pool\n",
"from tqdm import tqdm\n",
"\n",
"from huggingface_hub import Repository\n",
"\n",
"\n",
"def save_shard(shard_tuple):\n",
" \"\"\"Save shard\"\"\"\n",
" filename, shard = shard_tuple\n",
" # use to_json instead to save as json file\n",
" shard.to_parquet(filename)\n",
"\n",
"\n",
"def save_manual_shards(ds, user=\"lvwerra\", remote_dataset_repo=\"stack-exchange-paired\", subfolder=\"train\"):\n",
" \"\"\"Save sharded data\n",
" Args:\n",
" ds (Dataset): dataset to be saved\n",
" user (str): user name\n",
" remote_dataset_repo (str): remote dataset repository\n",
" out_path (str): path to save the shards\"\"\"\n",
" # this will create a folder OUT_PATH that is a clone of REMOTE_DATASET_REPO\n",
" # you can save the shards inside it and do git add/commit/push to push data to the hub\n",
" out_path = remote_dataset_repo\n",
" # if out path doesnt already exist\n",
" if not os.path.exists(out_path):\n",
" repo = Repository(\n",
" local_dir=out_path,\n",
" clone_from=user + \"/\" + remote_dataset_repo,\n",
" repo_type=\"dataset\",\n",
" private=False,\n",
" use_auth_token=True,\n",
" git_user=user,\n",
" )\n",
"\n",
" # files will be numerous we save them in a folder called data inside out_path\n",
" if not os.path.exists(out_path):\n",
" os.mkdir(out_path + \"/data\")\n",
" os.mkdir(out_path + f\"/data/{subfolder}\")\n",
" \n",
" SHARD_SIZE = 1000 << 20\n",
" if ds._indices is not None:\n",
" dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)\n",
" else:\n",
" dataset_nbytes = ds.data.nbytes\n",
" num_shards = int(dataset_nbytes / SHARD_SIZE) + 1\n",
" print(f\"Number of shards: {num_shards}\")\n",
"\n",
" print(\"sharding the dataset\")\n",
" t_start = time.time()\n",
" shards = (\n",
" ds.shard(num_shards=num_shards, index=i, contiguous=True)\n",
" for i in range(num_shards)\n",
" )\n",
" # use f\"{OUT_PATH}/data/train-{index:05d}-of-{num_shards:05d}.json\" instead for json files\n",
" filenames = (\n",
" f\"{out_path}/data/{subfolder}/train-{index:05d}-of-{num_shards:05d}.parquet\"\n",
" for index in range(num_shards)\n",
" )\n",
"\n",
" with Pool(16) as p:\n",
" list(\n",
" tqdm(\n",
" p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4),\n",
" total=num_shards,\n",
" )\n",
" )\n",
" print(f\"Time to save dataset: {time.time()-t_start:.2f}\")\n",
" # to push dataset to hub do: git add/commit/push inside OUT_PATH"
]
},
{
"cell_type": "code",
"execution_count": 101,
"id": "a90664eb-5c54-4fae-9a8a-d509bb2abdfe",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of shards: 20\n",
"sharding the dataset\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 20/20 [00:28<00:00, 1.43s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to save dataset: 29.15\n",
"Number of shards: 20\n",
"sharding the dataset\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 20/20 [00:22<00:00, 1.15s/it]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to save dataset: 23.42\n",
"Number of shards: 20\n",
"sharding the dataset\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 20/20 [00:10<00:00, 1.83it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to save dataset: 11.36\n",
"Number of shards: 12\n",
"sharding the dataset\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 12/12 [00:10<00:00, 1.12it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to save dataset: 11.13\n"
]
}
],
"source": [
"for key in ds_result:\n",
" save_manual_shards(ds_result[key], subfolder=key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d62f5a7f-2a23-4e0d-9e49-b29f88ea8c13",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|