Venkatachalam commited on
Commit
f6904ed
·
1 Parent(s): 864370e
Files changed (1) hide show
  1. README.md +16 -8
README.md CHANGED
@@ -5,14 +5,14 @@ annotations_creators:
5
  language:
6
  - en
7
 
8
- license: cc-by-4.0 # Or the specific license of the Muscle Aging Atlas data if different
9
 
10
  multilinguality: monolingual
11
 
12
  pretty_name: Human Skeletal Muscle Aging Atlas (sn/scRNA-seq)
13
 
14
  size_categories:
15
- - 100K<n<1M # Based on 183,161 cells, adjust if your downloaded file varies
16
 
17
  source_datasets:
18
  - original
@@ -146,7 +146,7 @@ from huggingface_hub import hf_hub_download
146
  import os
147
 
148
  # Define the Hugging Face repository ID and the local directory for downloads
149
- HF_REPO_ID = "longevity-db/human-muscle-aging-atlas-snRNAseq" # THIS IS YOUR NEW REPO ID
150
  LOCAL_DATA_DIR = "downloaded_human_muscle_data"
151
 
152
  os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
@@ -164,8 +164,8 @@ parquet_files = [
164
  "gene_statistics.parquet",
165
  "cell_type_proportions_overall.parquet",
166
  "donor_metadata.parquet"
167
- # Note: cell_type_proportions_by_{grouping_column}.parquet might have a dynamic name,
168
- # so users might need to download it separately or infer its name.
169
  ]
170
 
171
  # Download each file
@@ -241,6 +241,16 @@ else:
241
  # This data can then be split into train/test sets and used to train various ML models.
242
  ```
243
 
 
 
 
 
 
 
 
 
 
 
244
 
245
  -----
246
 
@@ -249,9 +259,7 @@ else:
249
  Please ensure you cite the original source of the Human Skeletal Muscle Aging Atlas data. Refer to the project's official website for the most up-to-date citation information for the atlas and its associated publications:
250
 
251
  **Human Skeletal Muscle Aging Atlas Official Website:**
252
- [https://www.muscleageingcellatlas.org/](https://www.muscleageingcellatlas.org/)
253
-
254
- If you use the `scanpy` library for any further analysis or preprocessing, please also cite Scanpy.
255
 
256
  ## **7. Contributions**
257
 
 
5
  language:
6
  - en
7
 
8
+ license: cc-by-4.0
9
 
10
  multilinguality: monolingual
11
 
12
  pretty_name: Human Skeletal Muscle Aging Atlas (sn/scRNA-seq)
13
 
14
  size_categories:
15
+ - 100K<n<1M
16
 
17
  source_datasets:
18
  - original
 
146
  import os
147
 
148
  # Define the Hugging Face repository ID and the local directory for downloads
149
+ HF_REPO_ID = "longevity-db/human-muscle-aging-atlas-snRNAseq" # THIS IS YOUR REPO ID
150
  LOCAL_DATA_DIR = "downloaded_human_muscle_data"
151
 
152
  os.makedirs(LOCAL_DATA_DIR, exist_ok=True)
 
164
  "gene_statistics.parquet",
165
  "cell_type_proportions_overall.parquet",
166
  "donor_metadata.parquet"
167
+ # Note: If 'cell_type_proportions_by_{grouping_column}.parquet' was generated,
168
+ # its name will depend on the grouping column found. You might need to add it separately.
169
  ]
170
 
171
  # Download each file
 
241
  # This data can then be split into train/test sets and used to train various ML models.
242
  ```
243
 
244
+ ### Creating a Model Card
245
+
246
+ The structured Parquet files in this dataset are perfectly suited for generating comprehensive **Hugging Face Model Cards** for models trained using this data. The various components provide crucial information for different sections of a model card:
247
+
248
+ - **`Data Overview`:** Information directly from this README (sections 1 and 2), describing the dataset's origin, scope, and relevance.
249
+ - **`Usage Examples`:** The provided Python code for loading the data demonstrates how a model might consume `expression.parquet` or `pca_embeddings.parquet` (as input features) and `cell_metadata.parquet` (for labels like 'age' or 'cell\_type').
250
+ - **`Limitations and Bias`:** `cell_metadata.parquet` can be analyzed to understand the demographics (e.g., age distribution, sex, genotype if available) of the original human donors, helping to identify potential biases or limitations in the dataset's representativeness.
251
+ - **`Dataset Transformations`:** Details from the "Data Cleaning and Processing" section of this README, explaining how the data was preprocessed before model training.
252
+ - **`Metrics and Evaluation Data`:** If a model is trained, `pca_embeddings.parquet` and `cell_metadata.parquet` can be used as inputs for evaluation metrics, and their distributions can be visualized as part of the model card's evaluation section.
253
+ - **`Environmental Impact`:** Details on the computational resources (e.g., CPU/GPU hours) used for data processing or model training, which can be part of a model card.
254
 
255
  -----
256
 
 
259
  Please ensure you cite the original source of the Human Skeletal Muscle Aging Atlas data. Refer to the project's official website for the most up-to-date citation information for the atlas and its associated publications:
260
 
261
  **Human Skeletal Muscle Aging Atlas Official Website:**
262
+ [https://www.muscleageingcellatlas.org/human-pp/](https://www.muscleageingcellatlas.org/human-pp/)
 
 
263
 
264
  ## **7. Contributions**
265