--- dataset_info: - config_name: Full features: - name: id dtype: string - name: question_id dtype: string - name: question dtype: string - name: answer dtype: string - name: image_source dtype: string - name: image dtype: image - name: category dtype: string splits: - name: adversarial num_bytes: 490408158.0 num_examples: 3000 - name: popular num_bytes: 490397000.0 num_examples: 3000 - name: random num_bytes: 490394976.0 num_examples: 3000 download_size: 255022914 dataset_size: 1471200134.0 - config_name: default features: - name: id dtype: string - name: question_id dtype: string - name: question dtype: string - name: answer dtype: string - name: image_source dtype: string - name: image dtype: image - name: category dtype: string splits: - name: test num_bytes: 1471200135.0 num_examples: 9000 download_size: 255022914 dataset_size: 1471200135.0 configs: - config_name: Full data_files: - split: adversarial path: Full/adversarial-* - split: popular path: Full/popular-* - split: random path: Full/random-* - config_name: default data_files: - split: test path: data/test-* ---

# Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [POPE](https://github.com/RUCAIBox/POPE). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @article{li2023evaluating, title={Evaluating object hallucination in large vision-language models}, author={Li, Yifan and Du, Yifan and Zhou, Kun and Wang, Jinpeng and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2305.10355}, year={2023} } ```